×
23.07.2019
219.017.b71e

Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение предназначено для определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием при контроле и настройке оптических элементов. Способ измерения радиуса кривизны оптических деталей больших размеров с центральным осевым отверстием содержит установку начального положения центра кривизны измеряемого зеркала любым прибором, позволяющим получить автоколлимационный ход лучей, проходящих через центр кривизны измеряемого зеркала. При этом в начальном положении направляют подвижным зеркалом световой пучок лазерного дальномера на поверхность измеряемого зеркала в пределах его апертурного угла под углом к оптической оси и через ее центр кривизны для получения расстояния D1 от дальномера до измеряемой поверхности через подвижное зеркало. После чего сдвигают подвижное зеркало и повторяют установку начального положения для зеркала известного радиуса Rэт, далее подвижное зеркало возвращают в прежнее положение, при котором световой пучок лазерного дальномера попадает на зеркало известного радиуса Rэт под тем же углом, что и для измеряемой поверхности, и проходит через центр кривизны зеркала известного радиуса Rэт, после чего, не изменяя положения дальномера, измеряют расстояние D2 от дальномера до измеряемой поверхности известного радиуса Rэт через подвижное зеркало, определяя искомый радиус контролируемой вогнутой оптической сферической поверхности Rз как разницу между этими двумя дальностями, плюс величина Rэт, т.е. Rз=D1-D2+Rэт. Технический результат – обеспечение возможности измерения вогнутых оптических сферических поверхностей с центральным осевым отверстием. 1 ил.
Реферат Свернуть Развернуть

1. Область техники, к которой относится изобретение

Предлагаемое изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности.

2. Уровень техники

Задача измерения (определения) радиуса кривизны оптических поверхностей деталей больших размеров с осевым отверстием (крупногабаритной оптики) является достаточно важной и актуальной, особенно в области астрономических оптических систем.

Известен способ измерения радиуса кривизны оптической поверхности при отсутствии точной направляющей, который предполагает использование автоколлимационной трубы, а косвенное измерение радиуса кривизны оптической поверхности производится по формуле, в которую входят фокусное расстояние объектива автоколлимационной трубы, расстояние между вершиной измеряемой поверхности и передней главной плоскостью объектива и измеренная прямым способом величина перемещения окуляра автоколлимационной трубы. (См. Креопалова Г.В., Лазарева Н.Л., Пуряев Д.Т. «Оптические измерения».: М. Машиностроение. 1987 г. Стр. 89-91). Однако, в этом способе наличие нескольких составляющих в формуле увеличивает погрешность измерения радиуса кривизны.

Также известен способ определения радиуса кривизны вогнутой оптической сферической поверхности с помощью метода дальнометрии (патент RU 2491504), в котором измерение ведется вдоль оптической оси, на которой расположена измеряемая поверхность и ось автоколлимационного микроскопа. Именно этот способ выбран в качестве прототипа. Такой способ исключает большинство погрешностей первого, но не позволяет измерять дальность до поверхности с центральным осевым отверстием.

В прототипном способе фокусируют автоколлимационный микроскоп в центр кривизны вогнутой оптической сферической поверхности и в этом положении фиксируют относительное расположение подвижного основания микроскопа и вогнутой оптической сферической поверхности. Далее при неподвижном положении вогнутой оптической сферической поверхности и автоколлимационного микроскопа, методом оптической дальнометрии, с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, определяют дальность до вогнутой оптической сферической поверхности. После этого устанавливают в центр кривизны вогнутой оптической сферической поверхности предмет и определяют дальность до этого предмета методом оптической дальнометрии, с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа и находят разницу между этими двумя дальностями, которая и будет радиусом кривизны вогнутой оптической сферической поверхности.

Ограничением данного способа является невозможность измерения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием. Действительно, для измерения радиуса кривизны зеркала с осевым отверстием требуется направить луч дальномера под определенным углом на него (фиг. 1) и затем установить отражающий предмет в центр кривизны под тем же углом. В этом случае прототипный способ не будет работать, поскольку для предмета, установленного в фокусе автоколлимационного микроскопа будет очень большая погрешность в определении его угла расположения относительно оптической оси.

3. Раскрытие изобретения

Для решения поставленной задачи был разработан новый способ, в котором вместо установки в центре кривизны измеряемого зеркала предмета осуществляется введение в ход лучей оптической схемы эталонного вогнутого зеркала известного радиуса Rэт, так, чтобы его центр кривизны совпадал с таковым у измеряемого зеркала, после чего луч дальномера направляют на него под тем же углом, что и на измеряемое зеркало.

Таким образом, предлагаемый способ определения радиуса кривизны вогнутой оптической сферической поверхности 1 (фиг. 1) методом дальнометрии использует любой прибор, позволяющий получить автоколлимационный ход лучей, проходящих через центр кривизны измеряемого зеркала в измерительной схеме фиг. 1 для определения положения центра кривизны этого зеркала. Такими приборами могут быть, например, прибор с датчиком волнового фронта (патент № RU 2623702), автоколлимационный микроскоп, либо интерферометр, позволяющие совместить точку фокусировки выходящего из них пучка с центром кривизны измеряемого зеркала. Прибор закрепляют на платформе 6, на которой установлены дальномер 4, неподвижное зеркало 2 и подвижное зеркало 3, а точку фокусировки выходящего из него пучка сначала совмещают с центром кривизны измеряемой вогнутой оптической сферической поверхности при убранном подвижном зеркале 3, после чего в этом положении в пределах апертурного угла измеряемой вогнутой оптической сферической поверхности вводят подвижное зеркало 3 и выбирают его угол наклона относительно оптической оси так, чтобы измерительный пучок лазерного дальномера попадал на эту поверхность через ее центр кривизны (фиг. 1) и фиксируют расстояние D1, после чего сдвигают подвижное зеркало 3 и устанавливают эталонное вогнутое зеркало известного радиуса Rэт 7 (фиг. 1), совмещая его центр кривизны с центром кривизны измеряемого зеркала, далее сдвигают подвижное зеркало в прежнее положение и снова направляют измерительный пучок лазерного дальномера на зеркало известного радиуса через его центр кривизны под тем же углом (зеркало 3 смещается перпендикулярно оптической оси, сохраняя угловое положение как в предыдущем измерении), что и для измеряемой поверхности и фиксируют полученное расстояние D2, В этом случае искомый радиус контролируемой вогнутой оптической сферической поверхности Rз будет равен разнице между этими двумя дальностями, плюс величина Rэт, т.е. Rз=D1-D2+Rэт.

Принципиальным отличием является измерение расстояния дальномером не вдоль оптической оси, а в пределах апертурного угла измеряемой вогнутой оптической сферической поверхности через ее центр кривизны. Благодаря такому изменению хода измерительного пучка лазерного дальномера и введению измерения расстояния до зеркала известного радиуса Rэт предлагаемый способ позволяет измерить радиус кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием.

Перечень фигур

На фиг. 1 изображена функциональная оптическая схема для осуществления предлагаемого способа измерения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием, где:

1 - измеряемое зеркало;

2 - неподвижное зеркало;

3 - подвижное зеркало;

4 - дальномер;

5 - автоколлимационный микроскоп;

6 - общая платформа для закрепления дальномера, измерительного прибора и неподвижного зеркала;

7 - эталонное зеркало известного радиуса.

4. Осуществление изобретения.

Пример осуществления изобретения Для проверки работоспособности предлагаемого к патентованию способа измерения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием в МГТУ им. Н.Э.Баумана в рамках НИР был создан макетный образец измерительного прибора (патент № RU 2623702) с дополнительной системой зеркал, указанных на фиг. 1.

Для измерения зеркал с радиусами кривизн в диапазоне от 985 мм до 1976 мм использовался метод дальнометрирования. Осевое отверстие имитировалось непрозрачной круговой диафрагмой. Погрешность измерения этим методом составила 0,05-0,08%. Результаты испытаний макетного образца прибора по методу дальнометрирования приведены в таблице.

Результат измерения дистанции дальномером имеет разброс значений меньше последнего отображаемого разряда, поэтому в качестве СКО взято паспортное значение СКО дальномера «Leica DISTO Х310» для дистанций от 1 до 8 м.


Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии
Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
16.01.2020
№220.017.f52c

Устройство с разнесенными ветвями для измерения радиусов кривизн вогнутых оптических деталей

Изобретение относится к оптическим измерительным системам. Устройство измерения радиуса кривизны вогнутой оптической сферической поверхности c разнесенными ветвями содержит точечный источник, оптическую систему измерительной части, включающую светоделительный элемент, датчик волнового фронта. В...
Тип: Изобретение
Номер охранного документа: 0002710976
Дата охранного документа: 14.01.2020
02.03.2020
№220.018.0803

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (двф)

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта содержит получение радиуса ближайшей сферы R и волнового фронта сферической формы W(ρ). В положении начальной установки для измеряемой асферической оптической детали,...
Тип: Изобретение
Номер охранного документа: 0002715434
Дата охранного документа: 28.02.2020
Показаны записи 1-10 из 27.
20.10.2013
№216.012.76e6

Устройство для определения углового отклонения оси лазерного пучка от номинального положения

Устройство содержит призменную систему, включающую первую пару пентапризм, содержащую первую и вторую пентапризмы, главные сечения которых расположены в одной плоскости Р, оптический клин, склеенный с первой отражающей гранью первой пентапризмы и выполненный так, что его выходная грань...
Тип: Изобретение
Номер охранного документа: 0002496098
Дата охранного документа: 20.10.2013
10.04.2014
№216.012.af5e

Устройство оптической идентификации измерительных каналов системы встроенного неразрушающего контроля на основе волоконно-оптических брэгговских датчиков

Изобретение относится к приспособлениям для регистрации сигналов с набора волоконно-оптических брэгговских датчиков системы встроенного неразрушающего контроля (ВНК) объекта. Устройство оптической идентификации измерительных каналов системы встроенного неразрушающего контроля на основе...
Тип: Изобретение
Номер охранного документа: 0002510609
Дата охранного документа: 10.04.2014
10.01.2015
№216.013.1786

Способ изготовления заготовок для волоконных световодов на основе кварцевого стекла, легированного азотом

Изобретение относится к области волоконной оптики и, в частности, к формированию заготовок волоконных световодов осаждением из газовой фазы. Техническим результатом изобретения является разработка режима изготовления заготовок для волоконных световодов на основе легированного азотом кварцевого...
Тип: Изобретение
Номер охранного документа: 0002537450
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17cf

Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)

Группа изобретений относится к области волоконных световодов, стойких к воздействию ядерного и/или ионизирующего излучения. Волоконный световод получают методом химического осаждения кварцевого стекла из смеси исходных газообразных реагентов. Световод имеет сердцевину из нелегированного...
Тип: Изобретение
Номер охранного документа: 0002537523
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2884

Привод для инструмента эндоскопического хирургического аппарата

Изобретение относится к медицине и может быть использовано в эндоскопии. Привод для инструмента эндоскопического хирургического аппарата содержит корпус и систему приводных валов, которые связаны с шарнирными узлами. В качестве управляющих механизмов концевого эффектора используют четыре...
Тип: Изобретение
Номер охранного документа: 0002541829
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3c6d

Концевой эффектор эндоскопического хирургического аппарата

Изобретение относится к медицине, а именно к эндоскопическим хирургическим аппаратам, и, в частности, к механизированным эндоскопическим хирургическим аппаратам. Задачей изобретения является создание упрощенного механизма приведения в действие хирургического инструмента (зажимы, иглодержатели,...
Тип: Изобретение
Номер охранного документа: 0002546957
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4674

Устройство мониторинга состояния трубопроводов большой длины, в том числе подводных трубопроводов

Изобретение относится к волоконно-оптическим сенсорным системам, используемым в нефтегазодобывающей промышленности, и может быть использовано для диагностики трубопроводов большой протяженности, в т.ч. подводных, с целью обнаружения утечек из них прокачиваемого материала. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002549540
Дата охранного документа: 27.04.2015
20.12.2015
№216.013.9992

Привод для инструмента эндоскопического хирургического аппарата

Изобретение относится к эндоскопическим хирургическим аппаратам и может быть использовано для применения во время проведения эндохирургических вмешательств. Привод для инструмента эндоскопического хирургического аппарата содержит корпус и систему приводных валов, связанных с шарнирными узлами....
Тип: Изобретение
Номер охранного документа: 0002570939
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a244

Устройство для контроля параметров качества плоских оптических деталей, расположенных под углом к оптической оси

Изобретение относится к области оптического приборостроения, а именно к интерференционным системам и методам контроля качества оптических поверхностей. Устройство для контроля качества плоских оптических деталей, расположенных под углом к оптической оси, состоит из передающего канала,...
Тип: Изобретение
Номер охранного документа: 0002573182
Дата охранного документа: 20.01.2016
12.01.2017
№217.015.5b50

Волоконно-оптическое устройство большой протяженности с источником малой мощности для регистрации вибрационных воздействий

Изобретение относится к волоконно-оптическим сенсорным системам, используемым в системах мониторинга протяженных и крупногабаритных объектов, и может быть использовано для мониторинга состояния судна и элементов его конструкции (баки и т.д.) путем акустоэмиссионной диагностики, детектируя...
Тип: Изобретение
Номер охранного документа: 0002589492
Дата охранного документа: 10.07.2016
+ добавить свой РИД