×
23.07.2019
219.017.b6fa

Результат интеллектуальной деятельности: Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля

Вид РИД

Изобретение

Аннотация: Использование: для детектирования напряженности электрического поля на поверхности конструкции космического аппарата. Сущность изобретения заключается в том, что миниатюрный измеритель параметров электризации космических аппаратов включает: микросистемный вибрационный модулятор, состоящий из металлического каркаса, печатных плат, катушек индуктивности, подвижного экранирующего электрода, чувствительного электрода, и электрическую схему преобразования, состоящую из последовательно соединенных усилителя тока и аналого-цифрового преобразователя, при этом вход усилителя тока подключен к чувствительному электроду, материал подвижного экранирующего электрода выбирается из соотношения Е=Ek, где Е - модуль Юнга, Е - модуль Юнга в н.у., k – коэффициент, характеризующий изменение модуля Юнга используемого материала в диапазоне температур от -150°С до +150°С, значение коэффициента находится в пределах 1,0≤k≤1,1. Технический результат: обеспечение возможности уменьшения массогабаритных параметров, снижения мощности потребления устройства, повышения работоспособности системы в условиях открытого космоса, а также устойчивости к жестким температурным условиям эксплуатации. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области микросистемной техники и может быть использовано при создании и изготовлении микромеханических датчиков, обеспечивающих детектирование напряженности электрического поля на поверхности конструкции космического аппарата.

Из уровня техники известны различные ротационные измерители напряженности электрического поля [1-6], действие которых основано на детектировании электрического поля при вращении двигателем измерительного электрода, при этом экранирующий электрод неподвижен.

Из уровня техники также известны флюксметры [7-13], в устройстве которых двигатель производит вращение экранирующий электрод, при котором измерительный электрод неподвижен, а также вибрационные датчики, в которых измерительный или экранирующий электроды совершают колебательное, возвратно-поступательное движение.

Недостатками известных конструкций является невозможность длительной работы в условиях вакуума при воздействии значительных перепадов температуры, вибрации, ударов из-за нестабильности скорости вращения двигателя, приводящей к ошибкам измерений. Кроме того, двигатель создает значительные помехи в измерительной системе. Другими недостатками известных технических решений, являются невозможность длительных непрерывных измерений, довольно низкая их чувствительность и крупногабаритность конструкции.

Измерители параметров электризации космических аппаратов на основе датчиков вибрационного типа [14-21], в которых измерительный или экранирующий электрод колеблются в области неоднородного поля под действием электромагнитного возбудителя, свободны от большинства недостатков приборов первых двух классов.

Однако они имеют недостаточную чувствительность вследствие того, что размеры и амплитуда перемещения электродов в них меньше чем в флюксметрах и ротационных датчиках.

Ближайшим аналогом предлагаемого технического решения является является датчик электростатического поля, описанный в авторском свидетельстве СССР №881628. В данном техническом решении датчик содержит чувствительный электрод, подключенный к блоку регистрации и две катушки индуктивности, расположенные соосно и подключенные к генератору переменного напряжения, при этом чувствительный электрод расположен под углом 3-10° к оси катушек индуктивности.

Его недостатком являются существенные массогабаритные параметры.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является снижение массогабаритных характеристик измерителей параметров электризации космических аппаратов.

Миниатюрный измеритель параметров электризации космических аппаратов содержит микросистемный вибрационный модулятор электрического поля, усилитель тока и аналого-цифровой преобразователь.

Конструкция предлагаемого микросистемного вибрационного модулятора электрических полей представлена на фиг. 1 а, б.

На фиг. 1 а, б обозначено ссылочными позициями следующее:

1 - катушки индуктивности;

2 - чувствительный электрод;

3 - подвижный экранирующий электрод;

4 - печатные платы;

5 - металлический каркас;

К металлическому каркасу (5) прикреплены печатные платы (4) и подвижный экранирующий электрод (3). К печатным платам (4) приклеены катушки индуктивности (1). На нижнюю печатную плату (4) припаян чувствительный электрод (2). Подвижный экранирующий электрод (3) с помощью катушек индуктивности (1), располагающимися под и над ним, приводится магнитными силами в колебательное движение на частоте механического резонанса. На нижней печатной плате (4) в центре отверстия подвижного экранирующего электрода (3) располагается закрепленный чувствительный электрод (2).

Катушки выполнены по технологии SMD (элемент, монтируемый на поверхность) и содержат ферритовые Н-образные сердечники и расположены симметрично относительно экранирующего электрода.

Подвижный экранирующий электрод выполнен из твердого материала, обладающего свойствами ферромагнетика с высокой магнитной проницаемостью, и расположен так, что ось симметрии чувствительного электрода равноудалена от внутреннего края отверстия подвижного экранирующего электрода.

Чувствительный электрод, сформирован на нижней печатной плате, содержит подвижный экранирующий электрод, выполненный в виде плоской одноконсольной балки с толщиной, в виде тонкой пластинки с большим прогибом, определяемой выражением h=(0,01-0,02)*b, где b - ширина балки, при этом диаметр чувствительного электрода меньше диаметра отверстия подвижного экранирующего электрода поз. 2 на фиг. 1 а, б; материал подвижного экранирующего электрода выбирают из соотношения Е=E0k, где Е - модуль Юнга, Е0 - модуль Юнга в н.у., к - коэффициент характеризующий изменение модуля Юнга используемого материала в диапазоне температур от -150°С до +150°С, при этом значение коэффициента находится в пределах 1,0≤к≤1,1.

На фиг. 2 представлена структурная схема миниатюрного датчика параметров элекризации космического аппарата в составе микромеханического вибрационного модулятора и схемы преобразования, состоящей из усилителя тока (6) и аналого-цифрового преобразователя (7).

Датчик параметров электризации космического аппарата работает следующим образом. При колебаниях подвижного экранирующего электрода (3) чувствительный электрод (2) углубляется внутрь отверстия подвижного экранирующего электрода (3) или выдвигается из отверстия. При наличии внешнего электрического поля это приводит к изменению потенциала чувствительного электрода (2). Сигнал с выхода микромеханического вибрационного модулятора усиливается усилителем тока и преобразуется аналого-цифровым преобразователем в сигнал, пропорциональный напряженности электрического поля, который затем поступает на передающее устройство.

Заявленное изобретение обеспечивает создание миниатюрных измерителей параметров электрических полей космических аппаратов, образовавшихся в результате накопления поверхностью космических аппаратов электростатических зарядов. Данный вид устройств может изготовляться для различных пороговых значений электрических полей в широком диапазоне значений детектируемых электрических полей.

Кроме снижения массогабаритных характеристик миниатюрных измерителей параметров электрических полей космических аппаратов, разработанная конструкция позволяет уменьшить мощность потребления устройства (не менее 10%), повысить работоспособность в условиях открытого космоса, а также устойчивость к жестким климатическим условиям эксплуатации.

Источники информации, принятые во внимание

1. Авторское свидетельство 580525 от 15.11.77 «Датчик электростатического поля».

2. Авторское свидетельство 593165 от 15.02.78 «Датчик для регистрации плотности статистического электричества».

3. Патент RU 2199761 от 27.02.2003 «Устройство для измерения напряженности статического и квазистатического электрического поля».

4. Патент США на изобретение US 6483223 "Method to prevent charging effects in electrostatic devices". Victor Donald Samper, Uppili Sridhar, Olaf Knueppel, Feng Han Hua, Hui Wing, Cheong. Institute of Microelectronics. 19.11.2002.

5. Авторское свидетельство 653583 от 11.05.77 «Датчик электростатического поля».

6. Авторское свидетельство 769455 от 26.12.78 «Датчик электростатического поля».

7. Авторское свидетельство 629513 от 28.08.78 «Датчик электростатического поля».

8. Авторское свидетельство 718809 от 28.02.80 «Измеритель напряженности электростатического поля».

9. Авторское свидетельство 1116399 от 21.04.83 «Устройство для измерения напряженности электрического поля».

10. Авторское свидетельство 1201784 от 16.12.83 «Устройство для измерения напряженности электрического поля СВЧ».

11. Патент RU 2020497 от 30.09.1994 «Датчик электростатического поля»

12. Патент RU 2028636 от 09.02.1995 «Устройство для измерения напряженности электростатического поля».

13. Патент RU 2442183 от 10.02.2012 «Датчик измерителя напряженности электростатического поля».

14. Авторское свидетельство 845119 от 20.03.78 «Датчик электростатического поля».

15. Авторское свидетельство 881628 от 05.10.79 Датчик электростатического поля».

16. Авторское свидетельство 1709246 от 07.04.88 «Датчик электростатического поля».

17. Патент RU 2212678 от 20.09.2003 «Устройство для измерения напряженности электростатического поля».

18. Патент RU 2414717 от 20.03.2011 «Датчик электростатического поля и способ измерения электростатического поля».

19. Патент RU 2445639 от 20.03.2012 «Способ измерения напряженности электрического поля».

20. Заявка США на изобретение US 2009/0273337 «Electric field sensor with electrode interleaving vibration». Shanhong XIA, Chao YE, Chao GONG, Xianxiang CHEN, Qiang BAI, Shaofeng CHEN, 5.11.2009.

21. Патент WO 2014045406 от 27.03.2014 «Potential measuring device»


Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля
Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля
Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля
Источник поступления информации: Роспатент

Показаны записи 51-60 из 120.
03.11.2018
№218.016.9a28

Способ тестирования арсенид-галиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС). Заявленный способ тестирования...
Тип: Изобретение
Номер охранного документа: 0002671546
Дата охранного документа: 01.11.2018
03.11.2018
№218.016.9a34

Способ наземной эксплуатации системы электропитания космического аппарата

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования. Вначале на...
Тип: Изобретение
Номер охранного документа: 0002671600
Дата охранного документа: 02.11.2018
03.11.2018
№218.016.9a36

Способ ориентации космического аппарата в солнечно-земной системе координат

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем его разворотов вокруг второй и третьей осей по информации с прибора ориентации на Землю. Ориентацию второй оси КА относительно...
Тип: Изобретение
Номер охранного документа: 0002671597
Дата охранного документа: 02.11.2018
09.11.2018
№218.016.9bbd

Радиоэлектронный блок теплонагруженный

Изобретение может быть использовано при конструировании бортовых аналоговых и цифровых устройств с источниками питания, предназначенных для эксплуатации в составе космических аппаратов. Технический результат - повышение эффективности радиоэлектронного блока и его эксплуатационных возможностей....
Тип: Изобретение
Номер охранного документа: 0002671852
Дата охранного документа: 07.11.2018
11.11.2018
№218.016.9c5c

Катод плазменного ускорителя

Изобретение относится к плазменной технике, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды, и может быть использовано при разработке электроракетных двигателей. Катод плазменного ускорителя содержит пусковой электрод с отверстием в торцевой...
Тип: Изобретение
Номер охранного документа: 0002672060
Дата охранного документа: 09.11.2018
24.11.2018
№218.016.a08f

Противоточный теплообменник

Изобретение относится к энергетическому машиностроению, авиационной и ракетной технике и может быть использовано в теплообменниках. Изобретение заключается в том, что теплообменная секция состоит из основного и двух концевых участков, на которых сечение каналов меняется от прямоугольного к...
Тип: Изобретение
Номер охранного документа: 0002673305
Дата охранного документа: 23.11.2018
28.11.2018
№218.016.a137

Космический аппарат

Изобретение относится к космической технике. Космический аппарат (КА) содержит два телескопа, закрепленных на опорных узлах верхнего пояса фермы, и модуль служебных систем. Верхний пояс фермы содержит шесть опорных узлов, а нижний - восемь. Четыре опорных узла верхнего пояса фермы совмещены с...
Тип: Изобретение
Номер охранного документа: 0002673447
Дата охранного документа: 26.11.2018
28.11.2018
№218.016.a169

Способ термостатирования бортовой аппаратуры полезного груза, размещенного внутри головного обтекателя космической головной части ракеты космического назначения, и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ термостатирования бортовой аппаратуры полезного груза (ПГ), размещенного внутри головного обтекателя (ГО) космической головной части (КГЧ) ракеты космического назначения (РКН), включает вдув термостатирующей среды во внутреннее...
Тип: Изобретение
Номер охранного документа: 0002673439
Дата охранного документа: 26.11.2018
30.11.2018
№218.016.a1ef

Способ изготовления статора электрической машины

Изобретение относится к электротехнике, к технологии изготовления электрических машин, и может быть использовано в электротехнической промышленности и приборостроении. Технический результат состоит в повышении КПД электрической машины в целом путем повышения точности геометрических размеров,...
Тип: Изобретение
Номер охранного документа: 0002673450
Дата охранного документа: 27.11.2018
15.12.2018
№218.016.a7c4

Теплозащитное покрытие

Изобретение относится к области порошковой металлургии, в частности к теплозащитным покрытиям для защиты поверхности деталей, подверженных воздействию высокотемпературных газовых потоков и выполненных, в том числе, из двухслойных паяных конструкций и может быть использовано для защиты изделий...
Тип: Изобретение
Номер охранного документа: 0002675005
Дата охранного документа: 14.12.2018
Показаны записи 51-51 из 51.
17.06.2023
№223.018.7f2d

Способ изготовления микромодуля

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате...
Тип: Изобретение
Номер охранного документа: 0002773807
Дата охранного документа: 09.06.2022
+ добавить свой РИД