×
23.07.2019
219.017.b6ed

Результат интеллектуальной деятельности: Способ выполнения анодного заземления

Вид РИД

Изобретение

№ охранного документа
0002695101
Дата охранного документа
19.07.2019
Аннотация: Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает определение уровней грунтовых вод и промерзания грунта на участке выполнения анодного заземления, бурение ниже этих уровней скважины вдоль защищаемого сооружения с выходом на дневную поверхность обоих концов скважины, установку в скважине труб из токопроводящего композита, размещение в трубах защитных электродов с выводом подключающих кабелей с обоих концов скважины, при этом вдоль защищаемого сооружения на участке выполнения анодного заземления пошагово измеряют переходное сопротивление изоляционного покрытия сооружения, разбивают участок выполнения анодного заземления на интервалы, характеризуемые различным сопротивлением покрытия, выбирают сопротивление труб из токопроводящего композита, соответствующего каждому интервалу, устанавливают трубы из токопроводящего композита таким образом, чтобы после их размещения в скважине трубы с определенным сопротивлением располагались в соответствующем интервале. Технический результат: повышение эффективности работы анодного заземления при различном сопротивлении изоляционного покрытия сооружения. 3 ил., 1 пр.

Изобретение относится к области электрохимической защиты подземных сооружений от грунтовой коррозии и может найти применение в нефтегазовой промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления.

Известно устройство горизонтального анодного заземления, включающее траншею, которую выполняют вдоль защищаемого сооружения, электроды анодного заземления, размещенные в траншее, контрольно-измерительные колонки для контроля эффективности электрохимической защиты, кабели для соединения электродов и токопроводящий раствор, покрывающий электроды (патент РФ № 2407824, опубл. 27.12.2010 г.).

К недостаткам способа относят трудоемкость выполнения заземления и его ремонта при наличии рядом с защищаемой конструкцией сторонних подземных трубопроводов, дорог с твердым покрытием, подземных линий связи, силовых кабелей, например на территории промышленных площадок компрессорных и насосных станций.

Наиболее близким к заявляемому изобретению является способ выполнения анодного заземления, включающий бурение скважины преимущественно горизонтально, вдоль подземного сооружения с выходом на дневную поверхность с обоих концов скважины, обсадку скважины и протягивание в нее электродов с установкой их в горизонтальной части скважины, заполнение скважины электропроводящим материалом, при этом определяют уровень грунтовых вод и глубину промерзания грунта вдоль подземного сооружения. Горизонтальную часть скважины располагают ниже уровня грунтовых вод и глубины промерзания грунта, скважину обсаживают перфорированными неметаллическими трубами или электропроводными трубами из композиционного материала, а электроды подключают к кабелям, выходящим на дневную поверхность с обоих концов скважины (патент РФ № 2521927 опубл. 10.07.2014 г.).

Недостатком данного способа является то, что в случае наличия дефектов изоляционного покрытия на защищаемом сооружении, при обеспечении катодной защиты данного сооружения, происходит неоптимальное распределение разности потенциалов «сооружение-земля». На участках с дефектами изоляционного покрытия наблюдается локальное снижение разности потенциалов «сооружение-земля», при общих значениях в пределах регламентируемых нормативной документацией (для газонефтепроводов ГОСТ Р 51164-98). Повышение разности потенциалов «сооружение-земля» на участках с дефектами изоляционного покрытия осуществляется за счет увеличения силы тока станций катодной защиты, что приводит к увеличению разности потенциалов «сооружение-земля» и может привести к выходу значений за границы максимально допустимого потенциала согласно нормативной документации.

Задача изобретения заключается в повышении эффективности работы анодного заземления при различном сопротивлении изоляционного покрытия сооружения.

Поставленная задача решается тем, что в способе выполнения анодного заземления, включающем определение уровней грунтовых вод и промерзания грунта на участке выполнения анодного заземления, бурение ниже этих уровней скважины вдоль защищаемого сооружения с выходом на дневную поверхность обоих концов скважины, установку в скважине труб из токопроводящего композита, размещение в трубах защитных электродов с выводом подключающих кабелей с обоих концов скважины, вдоль защищаемого сооружения на участке выполнения анодного заземления пошагово измеряют переходное сопротивление изоляционного покрытия сооружения, разбивают участок выполнения анодного заземления на интервалы, характеризуемые различным сопротивлением покрытия, выбирают сопротивление труб из токопроводящего композита, соответствующее каждому интервалу, устанавливают трубы из токопроводящего композита таким образом, чтобы после их размещения в скважине, трубы с определенным сопротивлением располагались в соответствующем интервале.

На фиг.1 показан график значений измеренной разности потенциалов «сооружение-земля» на подводном переходе магистрального газопровода через реку, из которого видно, что в местах повреждения изоляционного покрытия имеется локальное снижение разности потенциалов «сооружение-земля» ниже уровня Umin, регламентируемого нормативной документацией.

На фиг.2 показано сравнение распределения разности потенциалов «сооружение-земля» при защите от существующей станции катодной защиты с глубинными анодными заземлениями и при использовании защитного электрода, проложенного в трубах из токопроводящего композита с различным сопротивлением, на которой изображены:

1 – график распределения разности потенциалов «сооружение-земля» при защите от существующей станции катодной защиты;

2 – график распределения разности потенциалов «сооружение-земля» при использовании защитного электрода, проложенного в трубах из токопроводящего композита с различным сопротивлением.

Способ поясняет фиг.3, на которой изображены:

3 – защищаемое сооружение;

4 – скважина;

5 – уровень грунтовых вод;

6 – уровень промерзания грунта;

7 – поверхность грунта;

8 – кабели;

9 – защитный электрод;

10 – трубы из токопроводящего композита.

Способ выполнения анодного заземления осуществляют следующим образом.

Выполняют анализ гидрогеологических характеристик грунта вдоль защищаемого сооружения 3 (фиг.3). Методом наклонно-направленного либо горизонтально-направленного бурения бурят скважину 4, которая на участке действия анодного заземления параллельна защищаемому сооружению 3 и проходит ниже уровня грунтовых вод 5 и уровня промерзания грунта 6, в этом случае часть скважины, в которой расположены защитные электроды, постоянно находится в электропроводящем слое грунта, чем обеспечивается эффективность работы анодного заземления. Оба конца скважины выходят на дневную поверхность 7.

Измеряют переходное сопротивление изоляционного покрытия сооружения бесконтактными методами измерения.

Разбивают участок выполнения анодного заземления на интервалы, характеризуемые различным сопротивлением покрытия. Выбирают сопротивление труб из токопроводящего композита, соответствующее каждому интервалу.

В пробуренной скважине устанавливают трубы из токопроводящего композита 10 таким образом, чтобы после их размещения в скважине трубы с определенным сопротивлением располагались в соответствующем интервале, внутрь которых при помощи троса протягивают защитные электроды 9. Внутрь труб закачивают электропроводящий раствор.

Защитные электроды 9 подключают кабелями 8 к системе электрохимической защиты, при этом кабели выводят с обоих концов скважины 4, что снижает падение напряжения в кабелях и повышает надежность заземления.

Пример

Участок магистрального газопровода 3 пересекает реку (на фиг.3 не показано) шириной 1000 м и глубиной до десяти метров. На берегу расположена станция катодной защиты (на фиг.3 не показано). Методом катодной поляризации участка газопровода, а также при помощи бесконтактного измерителя тока, например БИТА-1, определяют, что на газопроводе под рекой имеются повреждения изоляционного покрытия газопровода значительных размеров, на участках с 550 до 590 м, с 710 до 730 м и на 820 м, что делает неэффективной катодную защиту, осуществляемую станцией катодной защиты, работающей с глубинными анодами, расположенными на берегу реки, и силой тока на выходе станции равной 0,8 А. В местах повреждения изоляционного покрытия имеется локальное снижение разности потенциалов «сооружение-земля» (фиг.1). Увеличение режимов работы станции катодной защиты приводит к превышению максимально допустимой разности потенциалов «сооружение-земля» по ГОСТ Р 51164-98 в местах с неповрежденным изоляционным покрытием, при этом разности потенциалов «сооружение-земля» в местах повреждения изоляционного покрытия не достигает требуемых значений. Выполнить ремонт изоляции не представляется возможным. Требуется установка дополнительного анодного заземления для станции катодной защиты вдоль газопровода на подводном переходе.

По проектной документации определяют глубину заложения трубопровода, тип и характеристики грунтов, уровень грунтовых вод в районе перехода и под ним.

Выбирают трубы, изготовленные из токопроводящего композита, с удельным электрическим сопротивлением токопроводящего композита равным 10000 Ом∙м, при этом для установки в зоне повреждения изоляционного покрытия газопровода выбирают трубы, изготовленные из токопроводящего композита, с удельным электрическим сопротивлением токопроводящего композита равным 10 Ом∙м.

При помощи оборудования для наклонно-направленного бурения (на фиг. не показано) бурят скважину 4 диаметром 168 мм, которая проходит на глубине заложения нижней образующей трубопровода 3 и выходит за 400 м от уреза воды (на фиг.3 не показано) в каждую сторону. В скважину 4 протягивают трубы 10 внешним диаметром 120 мм из токопроводящего композиционного материала, собирая колонну труб таким образом, чтобы трубы с меньшим сопротивлением после установки находились в районе повреждения изоляционного покрытия.

В трубы 10 закачивают электропроводный гель и протягивают защитный электрод (протяженный гибкий анод) 9 типа ПВЕК по ТУ 3435-005-97598003-2011 длиной 1000 м с кабелями 8, выходящими на дневную поверхность 7 из обоих концов скважины 4, и подключают их к станции катодной защиты (на фиг.3 не показано), расположенной на берегу.

Включают станцию катодной защиты и регулируют силу тока на выходе станции таким образом, чтобы разность потенциалов «сооружение-земля» находилась в пределах диапазона, соответствующего
ГОСТ Р 51164-98. Устанавливают, что при силе тока на выходе станции катодной защиты равной 0,12 А разность потенциалов «сооружение-земля» на подводном переходе газопровода соответствует ГОСТ Р 51164-98 (фиг.2).

Таким образом, использование способа выполнения анодного заземления с применением труб из токопроводящего композита, с различным сопротивлением в местах локального повреждения изоляционного покрытия, позволяет обеспечить разность потенциалов «сооружение-земля» в пределах диапазона, соответствующего ГОСТ Р 51164-98, на подводном переходе газопровода, при снижении силы тока на выходе станции катодной защиты в 6,5 раз, для данных условий.

Способ выполнения анодного заземления, включающий определение уровней грунтовых вод и промерзания грунта на участке выполнения анодного заземления, бурение ниже этих уровней скважины вдоль защищаемого сооружения с выходом на дневную поверхность обоих концов скважины, установку в скважине труб из токопроводящего композита, размещение в трубах защитных электродов с выводом подключающих кабелей с обоих концов скважины, отличающийся тем, что вдоль защищаемого сооружения на участке выполнения анодного заземления пошагово измеряют переходное сопротивление изоляционного покрытия сооружения, разбивают участок выполнения анодного заземления на интервалы, характеризуемые различным сопротивлением покрытия, выбирают трубы из токопроводящего композита с сопротивлением, соответствующим каждому интервалу, и устанавливают их в скважине в соответствующем интервале.
Способ выполнения анодного заземления
Способ выполнения анодного заземления
Источник поступления информации: Роспатент

Показаны записи 11-15 из 15.
10.05.2018
№218.016.3dbb

Конструкция перехода трубопровода через препятствия

Изобретение относится к строительству трубопроводов и может быть использовано при прокладке трубопроводов по дну водоемов, по заболоченной местности, а также на речных и морских переходах небольшой протяженности. Конструкция перехода трубопровода через препятствия содержит внутреннюю трубу,...
Тип: Изобретение
Номер охранного документа: 0002648171
Дата охранного документа: 22.03.2018
04.07.2018
№218.016.6a53

Способ регулирования параметров катодной защиты подземных трубопроводов

Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков защищаемого сооружения. Способ включает назначение контрольных точек, в которых определяют значение потенциала «труба-земля», изменение параметров катодной...
Тип: Изобретение
Номер охранного документа: 0002659543
Дата охранного документа: 02.07.2018
10.07.2018
№218.016.6f2c

Водопропускное сооружение под насыпью

Изобретение относится к строительству водопропускных сооружений в местах пересечений магистральными трубопроводами водотоков. Водопропускное сооружение под насыпью содержит набор бетонных плит, уложенных по конфигурации профиля русла ручья, под размещенной в насыпе рабочей трубой,...
Тип: Изобретение
Номер охранного документа: 0002660699
Дата охранного документа: 09.07.2018
02.10.2019
№219.017.d14d

Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты

Использование: в области электротехники. Технический результат - повышение безопасности и удобства эксплуатации оборудования. Устройство для разделения контуров катодной защиты и контуров защитных заземлений и молниезащиты выполнено в виде блока силовых диодов, блока ограничителей от...
Тип: Изобретение
Номер охранного документа: 0002700269
Дата охранного документа: 16.09.2019
21.05.2020
№220.018.1f7c

Способ определения срока вывода в ремонт анодного заземления

Изобретение относится к области электрохимической защиты от коррозии подземных трубопроводов. В начальный момент времени ввода установки катодной защиты УКЗ в эксплуатацию выполняют измерение значения сопротивления растеканию тока с анодного заземления, входящего в состав УКЗ участка...
Тип: Изобретение
Номер охранного документа: 0002721250
Дата охранного документа: 18.05.2020
Показаны записи 31-40 из 53.
20.02.2019
№219.016.c033

Способ определения предела текучести материала

Изобретение относится к области испытания физико-механических свойств материалов. Сущность: осуществляют подготовку гладкой поверхности образца и ступенчатое нагружение образца внешней растягивающей силой. Перед нагружением на поверхности образца размечают не менее трех областей измерения...
Тип: Изобретение
Номер охранного документа: 0002339017
Дата охранного документа: 20.11.2008
01.03.2019
№219.016.ccdf

Способ коррекции зрения после хирургических операций, выполненных на роговой оболочке глаза

Изобретение относится к офтальмологии и позволяет повысить остроту зрения после различных хирургических операций, выполненных на роговой оболочке глаза, в частности сквозной кератотрансплантации, различных видов передней кератотомии, а также после различных травм глаза. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002337658
Дата охранного документа: 10.11.2008
11.03.2019
№219.016.d8da

Способ определения механических напряжений в стальных конструкциях

Изобретение относится к области оценки технического состояния конструкций и может быть использовано для определения механических напряжений, например, в стальных трубопроводах надземной прокладки. Техническим результатом изобретения является повышение точности определения механических...
Тип: Изобретение
Номер охранного документа: 0002389988
Дата охранного документа: 20.05.2010
11.03.2019
№219.016.d8ec

Способ выявления нарушений соединения полимерного покрытия с металлическими трубами

Использование: для выявления нарушений соединения полимерного покрытия с металлическими трубами. Сущность заключается в том, что посредством пьезоэлектрического преобразователя ультразвукового дефектоскопа вводят импульсы ультразвуковых колебаний, принимают и преобразовывают импульсы в...
Тип: Изобретение
Номер охранного документа: 0002380699
Дата охранного документа: 27.01.2010
11.03.2019
№219.016.dcec

Способ определения механических напряжений в стальных конструкциях

Изобретение относится к области оценки технического состояния конструкций и может быть использовано для определения механических напряжений, например, в стальных трубопроводах надземной прокладки. Способ определения механических напряжений в стальных конструкциях заключаются в том, что...
Тип: Изобретение
Номер охранного документа: 0002439530
Дата охранного документа: 10.01.2012
11.03.2019
№219.016.dd83

Способ определения соотношения фаз в стали

Изобретение относится к области металловедения, в частности к способам определения соотношения фаз в феррито-перлитных сталях. Сущность: подготавливают гладкий участок поверхности исследуемого образца стали. В качестве рекомендуемого усилия на индентор принимают усилие, полученное в результате...
Тип: Изобретение
Номер охранного документа: 0002467307
Дата охранного документа: 20.11.2012
29.03.2019
№219.016.f1cb

Способ определения наличия и площади эквивалентного повреждения в изоляционном покрытии подземного трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при выявлении повреждений изоляционного покрытия труб. Технический результат: повышение точности определения площади сквозного повреждения в изоляции трубопровода, упрощение технической реализации при уменьшении затрат...
Тип: Изобретение
Номер охранного документа: 0002315329
Дата охранного документа: 20.01.2008
29.03.2019
№219.016.f435

Способ предотвращения развития дефектов стенок трубопроводов

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте трубопроводов. На участке трубопровода снижают до минимально возможной величины изгибные напряжения, которые определяют методами неразрушающего контроля (НК). Снижение кольцевых напряжений выполняют...
Тип: Изобретение
Номер охранного документа: 0002325582
Дата охранного документа: 27.05.2008
29.03.2019
№219.016.f43c

Способ ремонта провисающих и размытых участков подземного трубопровода

Изобретение относится к строительству трубопроводного транспорта и используется для ремонта магистральных трубопроводов подземной прокладки на провисающих и размытых участках в руслах малых водных преград. Разрабатывают концы участка трубопровода, выполняют дефектоскопию расположенных на концах...
Тип: Изобретение
Номер охранного документа: 0002325579
Дата охранного документа: 27.05.2008
29.03.2019
№219.016.f43e

Способ выявления участков трубопроводов, подверженных коррозионному растрескиванию под напряжением

Изобретение относится к трубопроводному транспорту и может быть использовано при эксплуатации подземных трубопроводов. С учетом изменения удельного электрического сопротивления грунта устанавливают различия в градиентах защитного потенциала. Определяют периоды высокого и низкого уровня...
Тип: Изобретение
Номер охранного документа: 0002325583
Дата охранного документа: 27.05.2008
+ добавить свой РИД