×
23.07.2019
219.017.b6ea

Результат интеллектуальной деятельности: Способ измерения ионосферных предвестников землетрясений

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: регистрируют волны плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов. Причем регистрацию осуществляют во взаимно ортогональных плотностях в двух разнесенных на измерительной базе пунктах. Обрабатывают зарегистрированные выборки сигналов. Рассчитывают направляющие косинусов вектора волн плотности электронной концентрации каждого пункта. Отождествляют проекцию точки пересечения направляющих на земную поверхность с гипоцентром очага землетрясения. Используя зарегистрированные выборки сигналов, рассчитывают время удара и ожидаемую магнитуду землетрясения. Технический результат: повышение чувствительности способа, увеличение интервала времени упреждающего прогноза сейсмического удара. 5 ил.

Изобретение относится к радиофизике и может найти применение в национальных системах сейсмологического контроля при мониторинге природных сред для прогнозирования землетрясений.

Предсказание землетрясений базируется на измерениях различных геофизических полей, изменяющих свои характеристики в потенциальном поле механических напряжений земной коры в области подготавливаемого землетрясения. Одним из чувствительных признаков - предвестников землетрясения являются электродинамические процессы, протекающие в околоземной плазме (ионосфере).

По параметрам переходного колебательного процесса (как вариации плотности электронной концентрации в слоях ионосферы) определяют гипоцентр проекции очага на ионосферу и характеристики ожидаемого сейсмического удара [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 64-65, 109, 127-129, 138].

Известен «Способ предсказания землетрясений» путем измерения волн плотности электронной концентрации при полете космического аппарата непосредственно на высотах соответствующих слоев ионосферы, Патент Ru №2 205 430, 2003 г - аналог. В способе аналога регистрируют волновой процесс, возникающий в среде накануне удара, вычисляют фазовый центр волнового процесса и его период, рассчитывают характеристики предстоящего удара по их зависимостям от периода, дополнительно получают серию регистрограмм дискретных отсчетов A(Li) электростатического потенциала внешней поверхности космических аппаратов при их полете по орбитам Li непосредственно через область ионосферного образования, находят фазовый центр процесса как точку пересечения траверз восходящих и нисходящих витков космических аппаратов, проведенных к участкам регистрограмм, где допплеровская частота измеряемого процесса равна нулю, отождествляют эту точку с проекцией гипоцентра очага на ионосферу, вычисляют период Т, магнитуду М и время ожидаемого удара tx из соотношений:

где ΔL=L2-L1 - разница пространственных периодов двух симметричных относительно траверзы полуволн регистрограммы;

- отношение пространственных периодов двух симметричных, относительно траверзы, полуволн регистрограммы,

v - скорость акустических волн в ионосфере;

Vr - радиальная скорость движения измерителя относительно фазового центра волнового процесса.

К недостаткам аналога следует отнести:

- все существующие космические аппараты имеют внутренние источники питания, «заземленные» на корпус. Создание дополнительного внешнего корпуса (в качестве обкладки конденсатора) изолированного от «заземленного» представляет технические трудности;

- невысокая чувствительность измерений из-за малой емкости создаваемого конденсатора.

Известны дистанционные методы измерений плотности электронной концентрации ионосферы N [1/м3], путем ее зондирования на частоте ниже критической [см., например, «Космонавтика», Энциклопедия, М, Изд. Сов. энциклопедия, 1986 г., стр. 161, Ионозоид] - ближайший аналог.

В ближайшем аналоге задающий генератор плавно изменяет частоту настройки приемно-передающего устройства в диапазоне от 1 до 20 МГц для получения амплитудно-частотной характеристики (АЧХ) отраженного от ионосферы сигнала. Ионозоид включает импульсный ВЧ передатчик, приемник, электронно-лучевой индикатор, задающий генератор передатчика является гетеродином приемника, чем достигается сопряжение и синхронизация приемника и передатчика. Высоту до отражающей поверхности ионосферы определяют по времени запаздывания отраженного сигнала. Плотность электронной концентрации слоя определяют пересчетом из АЧХ значений критической частоты и времени запаздывания.

Недостатками ближайшего аналога являются:

- невозможность по параметрам регистрируемого сигнала рассчитать ионосферные предвестники землетрясения;

- для пеленгации гипоцентра очага землетрясения необходимо измерять волновой процесс в двух, взаимно ортогональных, плоскостях.

Задача, решаемая заявленным способом, состоит в измерении динамики волнового процесса плотности электронной концентрации, реализуемой путем пеленгации фазового центра волн двумя пунктами с диаграммами направленности антенн в двух взаимно-ортогональных плоскостях на каждом пункте.

Технический результат достигается тем, что способ измерений ионосферных предвестников землетрясений включает регистрацию волн плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов во взаимно ортогональных плоскостях Ax(t), Ay(t) в двух, разнесенных на измерительной базе пунктах посредством антенн, с диаграммами направленности каждого из пунктов в ортогональных плоскостях, оси симметрии диаграмм направленности антенн по координате (х) ориентируют по направлению базы, обработку зарегистрированных выборок измерений сигналов, расчет направляющих косинусов вектора волн плотности электронной концентрации каждого пункта:

отождествление координат гипоцентра очага как проекции точки пересечения направляющих на земную поверхность, по изменениям амплитуд выборок измерений на интервале Δt вычисляют постоянную времени Т сейсмического процесса как

рассчитывают время удара tу=4,7T и ожидаемую магнитуду как

где А0 - установившееся значение амплитуды сигнала предвестника, равное

Δt=(t2-t1)=(t3-t2) интервал времени между отсчетами измерений A1, А2, A3.

Изобретение поясняется чертежами, где:

фиг. 1 - плотность электронной концентрации в слоях ионосферы;

фиг. 2 - суточный ход критической частоты (плотности электронной концентрации) в слое F2 а) невозмущенном состоянии, б) возмущенном, накануне сейсмического удара;

фиг. 3 - пеленгация фазового центра волн плотности электронной концентрации двумя пунктами, разнесенными на измерительной базе;

фиг. 4 - функция изменения амплитуды регистрируемого сигнала во времени;

фиг. 5 - функциональная схема устройства, реализующего способ.

Техническая сущность изобретения заключается в следующем. Накануне сейсмического удара в атмосфере происходит раскачка очага землетрясения [см., например, Патент Ru №2170446 кл. G.01.V, 9/00, 2001 г.] В приповерхностном слое атмосферы возникают акустолитосферные волны, которые, при их распространении вверх, служат «спусковым крючком» для возникновения плазменных волн электронной концентрации в слоях ионосферы. Исходная электронная концентрация N[1/m3] в слоях ионосферы иллюстрируется фиг. 1 [см., например, «Космонавтика», Энциклопедия, под ред. В.П. Глушко, М, Сов. энциклопедия, 1985 г., стр. 143]. Зарегистрированные в ряде экспериментов волны плотности электронной концентрации в ионосфере иллюстрируются графиками фиг. 2 [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 109]. За несколько часов до сейсмического удара, изменение критической частоты слоя F2 из-за изменения плотности электронной концентрации может достигать 40…50%. Для измерения пространственных волн в ионосфере предлагается осуществлять ее зондирование с двух, разнесенных на измерительной базе, пунктов. Признаками предвестниками землетрясения являются: гипоцентр (координаты) очага, ожидаемое время сейсмического удара (ty) и ожидаемая магнитуда (М).

Пеленгация фазового центра ионосферных волн иллюстрируется фиг. 3. Фазовый центр ионосферных волн находят как точку пересечения радиус-векторов. Положение радиус-векторов в пространстве полностью определяется косинус-направляющими. В прямоугольной системе координат, задаваемой ортогональными парами измерителей (13, 14), (15, 16), (17, 18), (19, 20) косинус-направляющая вектора равна отношению его проекции (Пр) на данную ось к длине вектора. Длины векторов R1, R2 фиг. 3 находятся как корень квадратный из суммы проекций:

Проекции радиус-векторов пропорциональны сигналам на входе приемников в ортогональных плоскостях х, у.

Кроме направления в пространстве, ионосферная волна характеризуется периодом (Т) и амплитудой A(t), которая изменяется во времени, фиг. 2. Из математики известно [см., например, Пискунов Н.С., «Дифференциальное и интегральное исчисления для ВТУЗов», учебник т. 1, 5-е издание, М, Наука, 1964 г., стр. 457-458], что сама функция и скорость ее изменения связаны дифференциальным уравнением первого порядка, общим решением которого является экспонента. Экспоненциальная зависимость обладает тем свойством, что по трем ее дискретным отсчетам может быть восстановлена вся функция и определен предел А0, к которому стремится экспонента:

Где A1, А2, А3 - амплитуды сигналов в моменты измерений (отсчетов) соответственно t1, t2, t3 В свою очередь, постоянную времени процесса Т определяют из соотношения:

Δt - интервал времени наблюдений между отсчетами A1, А2.

По постоянной времени переходного процесса прогнозируют характеристики ожидаемого сейсмического удара. Время удара - это интервал времени, за который амплитуда сигнала, с вероятностью близкой к единице, достигает установившегося значения А0, для экспоненты tуст=4,7T (с вероятностью 0,99). Магнитуду удара определяют из соотношения Гутенберга-Рихтера: [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 10, стр. 13].

Пример реализации способа

Заявленный способ может быть реализован по схеме фиг. 5. Функциональная схема фиг. 5 содержит два пункта измерителей 1, 2, разнесенных в пространстве на расстояние измерительной базы 3. На каждом из пунктов установлено по две антенны 4, 5 и 6, 7 с диаграммами направленности во взаимно ортогональных плоскостях, оси диаграмм направленности антенн 5, 7 ориентируют по направленности базы 3, с подключенными к антеннам приемниками 8, 9 и 10, 11 соответственно. Гетеродины приемников синхронизированы от единого передатчика 12, работающего в импульсном режиме, подключенного к антенне зондирования ионосферы 4. Выход каждого из приемников подключен к тракту обработки из последовательно включенных порогового устройства и аналогово-цифрового преобразователя соответственно (13, 14), (15, 16), (17, 18) и (19, 20). Все тракты обработки подключены к канальному коммутатору 21, имеющему выход на вход компьютера 22 обработки результатов измерений в составе элементов: процессора 23, оперативно-запоминающего устройства 24, винчестера 25, дисплея 26, принтера 27, клавиатуры 28. В компьютер закладывают программу обработки и программу синхронизации работы элементов измерителей, которую пересылают в программируемую схему выборки измерений 29. Результаты обработки выводят на сайт 30 сети Интернет для передачи потребителям.

Взаимодействие элементов устройства при прогнозировании землетрясений состоит в следующем. Известно «Явление раскачки очага землетрясения перед сейсмическим ударом», Научное открытие №365, 2008 г. [см., Потоцкий В.В., Бюллетень, Научные открытия, РАЕН, М, СПб, 2009 г., стр. 66-68].

Раскачка очага землетрясения сопровождается распространением от гипоцентра очага литосферных волн, которые через механизм передачи в виде акустических волн, возбуждают волны плотности электронной концентрации в ионосфере, как это иллюстрируется графиками фиг. 2.

Применительно к одной из возможных реализаций (фиг. 2, 4) установившееся значение сигнала А0 (в шкале квантования 0…255 уровней) составило величину ~250. Значения A1 и А2 в интервале наблюдений Δt=t2-t1=8 час, соответствовали A1=125, А2=175. Откуда постоянная времени

Ожидаемое время удара ty=4,7T=70 час = 2,9 суток.

Ожидаемая магнитуда удара М≈7,1 балла

Направляющие косинусы гипоцентра очага землетрясения (фиг. 3) для первого пункта α=44°, для второго пункта β=62°.

Все элементы устройства представляют существующие технические разработки и средства аналогов. В устройстве использованы новые, по отношению к аналогам, элементы измерительной аппаратуры фирмы Bruel & Kjair, ENDEVCO (Дания) следующих моделей: канальный коммутатор, пороговое устройство, аналогово-цифровой преобразователь - многофункциональный блок, модель 3560-L. «Антенна для зондирования ионосферы», Патент Ru №2504054, 2014 г., широкополосная, работающая во всей полосе критических частот ионосферы, из двух, скрещенных в ортогональных плоскостях ромбов, подвешенных на опорной мачте из композитного материала, высотой 32 м, создающей геометрию главной диагонали ромбов, работающих в режиме бегущей волны.

Эффективность способа характеризуется высокой чувствительностью, поскольку отраженный сигнал собирается с большой площади зондируемого участка ионосферы и, соответственно, увеличением интервала времени упреждающего прогноза сейсмического удара.


Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Источник поступления информации: Роспатент

Показаны записи 51-60 из 68.
14.06.2019
№219.017.8306

Способ определения бактериального эндотоксина в биологических жидкостях

Изобретение относится к области клинической лабораторной диагностики и представляет собой способ определения бактериального эндотоксина (БЭ) в плазме крови и моче, отличающийся тем, что предварительная подготовка образцов плазмы крови включает разбавление образцов плазмы крови физиологическим...
Тип: Изобретение
Номер охранного документа: 0002691413
Дата охранного документа: 13.06.2019
03.07.2019
№219.017.a497

Устройство формирования высокоскоростного удлиненного оперенного элемента, в том числе самозакручивающегося

Изобретение относится к оборонной технике и может быть использовано в различных кумулятивных боеприпасах (КБП), предназначенных для поражения целей высокоскоростными поражающими элементами (ПЭ). Устройство состоит из взрывателя, корпуса с заключенным в нем зарядом взрывчатого вещества с...
Тип: Изобретение
Номер охранного документа: 0002693207
Дата охранного документа: 01.07.2019
04.07.2019
№219.017.a4fc

Способ установки элементов в конструкции

Заявленное решение относится к мебельному производству и деревянному домостроению. Технический результат заключается в упрощении процесса установки. Способ установки элементов в конструкции включает размещение вертикальных и/или горизонтальных составляющих конструкции, в вертикальных и/или...
Тип: Изобретение
Номер охранного документа: 0002693265
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a5f3

Устройство для испытания трубчатых образцов из проницаемых материалов при комбинированном нагружении осевой силой и внешним давлением

Изобретение относится к области исследования прочностных свойств твердых материалов путем создания в них широкого диапазона напряжений, конкретно к испытаниям трубчатых образцов при действии внешнего давления и осевой растягивающей или сжимающей нагрузки. Устройство состоит из камеры высокого...
Тип: Изобретение
Номер охранного документа: 0002693547
Дата охранного документа: 03.07.2019
19.07.2019
№219.017.b604

Способ ковалентной иммобилизации лизоцима для последующего применения иммобилизованного лизоцима для снижения бактериальной обсемененности биологических жидкостей

Изобретение относится к технологиям производства и использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: расширение ассортимента способов...
Тип: Изобретение
Номер охранного документа: 0002694883
Дата охранного документа: 17.07.2019
23.07.2019
№219.017.b6ca

Волоконно-оптическое устройство регистрации вибрационных воздействий с разделением контролируемых участков

Изобретение относится к метрологии, в частности к рефлектометрии. Волоконно-оптическое устройство регистрации вибрационных воздействий содержит последовательно соединенные высокостабильный узкополосный источник излучения, усилитель оптического сигнала, управляемый драйвером акустооптический...
Тип: Изобретение
Номер охранного документа: 0002695098
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6db

Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий с одним приёмным модулем регистрации

Изобретение относится к волоконно-оптическим сенсорным системам. Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий включает в себя: последовательно соединенные высокостабильный узкополосный источник излучения; усилитель оптического сигнала (бустер); управляемый...
Тип: Изобретение
Номер охранного документа: 0002695058
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6ef

Способ измерений содержания парниковых газов в атмосфере

Изобретение относится к области экологии, к дистанционным методам мониторинга природных сред. Способ включает зондирование подстилающей поверхности спектрометром с широким полем зрения во всем интервале полос переизлучений газовых молекул Лаймана, Бальмара, Пашена, определение средневзвешенного...
Тип: Изобретение
Номер охранного документа: 0002695086
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b771

Способ очистки лесосеки после сортиментных лесозаготовок

Изобретение относится к способу очистки лесосеки после сортиментных лесозаготовок и может быть использовано в лесной промышленности на лесозаготовках. Лесная машина 7 перемещается по линии движения 4 перпендикулярно волокам. Линия движения 4 включает отрезки 5 равной длины, большей, чем диаметр...
Тип: Изобретение
Номер охранного документа: 0002694968
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b801

Космический комплекс для утилизации группы объектов крупногабаритного космического мусора

Изобретение относится к области машиностроения, а более конкретно к утилизации космического мусора. Космический комплекс для утилизации группы объектов космического мусора состоит из базового космического аппарата и нескольких тормозных двигательных модулей. К двигательному модулю присоединены...
Тип: Изобретение
Номер охранного документа: 0002695155
Дата охранного документа: 22.07.2019
Показаны записи 11-16 из 16.
19.08.2018
№218.016.7ddf

Способ идентификации загрязнений морской поверхности

Изобретение относится к способам дистанционных исследований морских акваторий и может быть использовано для идентификации загрязнений морской поверхности. Сущность: с помощью установленных на воздушно-космическом носителе средств осуществляют зондирование прибрежных акваторий, содержащих...
Тип: Изобретение
Номер охранного документа: 0002664255
Дата охранного документа: 15.08.2018
01.03.2019
№219.016.cec2

Способ краткосрочного прогнозирования землетрясений

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: на протяженной измерительной базе устанавливают два разнесенных в пространстве измерительных пункта. Каждый измерительный пункт содержит по два заглубленных в грунт датчика,...
Тип: Изобретение
Номер охранного документа: 0002458362
Дата охранного документа: 10.08.2012
10.04.2019
№219.017.09ac

Способ обнаружения очагов землетрясений сетью сейсмостанций

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: в сейсмоопасном регионе размещают сеть сейсмических станций с сейсмоприемниками из трехкомпонентных кондукто-метрических датчиков давления. Датчики давления размещают на...
Тип: Изобретение
Номер охранного документа: 0002463631
Дата охранного документа: 10.10.2012
29.04.2019
№219.017.4667

Способ верификации системы наземных измерений состояния атмосферы мегаполисов

Изобретение относится к дистанционным методам мониторинга природных сред и может быть использовано для систем санитарно-эпидемиологического контроля промышленных регионов. Согласно способу получают генерализованное, спектрозональное изображение в красной полосе видимого диапазона, содержащее...
Тип: Изобретение
Номер охранного документа: 0002463556
Дата охранного документа: 10.10.2012
29.05.2019
№219.017.6a3e

Способ определения загрязнения атмосферы мегаполисов вредными газами

Изобретение относится к экологии, а именно к дистанционным методам мониторинга природных сред и санитарно-эпидемиологическому контролю промышленных регионов. Способ включает синхронную съемку цифровой видеокамерой и гиперспектрометром, установленными на космическом носителе с положением входной...
Тип: Изобретение
Номер охранного документа: 0002460059
Дата охранного документа: 27.08.2012
23.07.2019
№219.017.b6ef

Способ измерений содержания парниковых газов в атмосфере

Изобретение относится к области экологии, к дистанционным методам мониторинга природных сред. Способ включает зондирование подстилающей поверхности спектрометром с широким полем зрения во всем интервале полос переизлучений газовых молекул Лаймана, Бальмара, Пашена, определение средневзвешенного...
Тип: Изобретение
Номер охранного документа: 0002695086
Дата охранного документа: 19.07.2019
+ добавить свой РИД