×
19.07.2019
219.017.b666

Результат интеллектуальной деятельности: Способ определения степени однородности одноосных кристаллов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптики, а именно к способам определения оптической однородности и выявления структурных дефектов оптических кристаллов, и может быть использовано для контроля качества одноосных кристаллов. Целью изобретения является разработка способа определения степени однородности одноосных кристаллов, позволяющего определять их пригодность для использования в электронно-оптических и акустооптических устройствах. Сущность: проводят анализ с помощью специализированного программного обеспечения зарегистрированных методом лазерной коноскопии в различных положениях образца относительно оптической системы интерференционных картин, при этом в процессе анализа производят попиксельное вычитание полученных изображений друг из друга по параметрам RGB с формированием результирующего массива значений, из данного массива определяют количество пикселей со значениями RGB (0,0.0), вычисляют отношение k этого количества N к общему числу пикселей получаемого изображения N, где k=1 характеризует однородность идеального кристалла. Технический результат заключается в повышении точности измерения однородности оптических элементов, выявлении дефектных областей с незначительными отклонениями показателей преломления. 5 ил.

Изобретение относится к области оптики, а именно к способам определения оптической однородности и выявления структурных дефектов оптических кристаллов и может быть использовано для контроля качества одноосных кристаллов.

Из уровня техники известен способ выявления оптической неоднородности с помощью поляризационно-оптического метода, основанного на наблюдении под микроскопом поверхности кристалла в линейно поляризованном свете [А. И. Колесников, О. В. Малышкина, И. А. Каплунов и др. Определение дислокационной структуры в монокристаллах парателлурита методом фотоупругости // Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2014, № 1, с. 81–89]. Недостатками этого способа являются дополнительные манипуляции по селективному химическому травлению, длительность эксперимента и отсутствие точных количественных характеристик.

Известен поляризационно-оптический способ исследования термических напряжений, возникающих в твердом материальном теле при воздействии локальных тепловых потоков (RU 2621458, опубл. 06.06.2017). Особенностью данного способа является использование модели пьезооптического материала без механических напряжений, которые создаются воздействием локального теплового потока, что затрудняет исследование собственных структурных дефектов оптического материала. Недостатком данного способа является использование микроскопа, что накладывает ограничения на размеры исследуемых образцов, а отношение максимального порядка к номинальному порядку изохром не дает точную количественную характеристику возникающих напряжений внутри образцов.

Существует способ исследования оптической однородности, основанный на наблюдении теневых картин свилей (объемных дефектов) с помощью проекционной установки. [ГОСТ 3521-81 Стекло оптическое. Метод определения бессвильности. ГОСТ 3518-80 Метод определения оптической однородности на коллиматорной установке.] Недостатком является необходимость наличия контрольного образца и зависимость проводимых измерений от оптической схемы.

Наиболее близким к заявляемому изобретению по технической сущности является способ анализа профиля интенсивности коноскопических (интерференционных) картин, получаемых при прохождении конического пучка лазерного излучения через кристаллическую пластину, помещенную между поляризатором и анализатором, позволяющий исследовать оптические аномалии в кристалле [О.Ю. Пикуль, Н.В. Сидоров. Лазерная коноскопия кристаллов. Апатиты: КНЦ РАН. 2014. 160с.] Недостатками способа являются неравномерное распределение интенсивности излучения по профилю лазерного пучка, возникновение артефактов в изображении, связанных с неидеальностью элементов оптической системы.

Задачей изобретения является разработка способа определения степени однородности одноосных кристаллов, позволяющего определять их пригодность для использования в электронно-оптических и акустооптических устройствах.

Данная цель достигается за счет того, что в способе определения степени однородности одноосных кристаллов, включающем регистрацию интерференционных картин методом лазерной коноскопии в различных положениях образца относительно оптической системы, их анализ с помощью специализированного программного обеспечения, в процессе анализа производят попиксельное вычитание полученных изображений друг из друга по параметрам RGB с формированием результирующего массива значений, из данного массива определяют количество пикселей со значениями RGB (0,0.0), вычисляют отношение k этого количества N0 к общему числу пикселей получаемого изображения N, где k=1 характеризует однородность идеального кристалла.

Техническим результатом заявляемого изобретения, обеспечиваемым приведенной совокупностью признаков, является простота в реализации, минимизирование влияния искажений, обусловленных оптической системой, что способствует повышению точности измерения однородности оптических элементов.

Изобретение поясняется графическими материалами:

на Фиг.1 представлена общая оптическая схема для регистрации коноскопических картин, где 1 - лазер, 2 - поляризатор, 3 - коллиматор, 4 - собирающая линза, 5 - поворотный предметный столик, 6 - поляризационный экран, 7 - система регистрации изображений, ПЗС - матрица сопряжённая с PC;

на Фиг.2 представлены положения образца при регистрации центральносимметричных коноскопических картин для анализа однородности определенной области образца;

на Фиг.3 представлены положения образца при регистрации коноскопических картин с различных областей;

на Фиг.4 представлены исследования образца парателлурита в направлении совпадающем с оптической осью, где а - коноскопическая картина полученная на образце, б - картина интерфейса программного обеспечения, включающего результирующее изображение и рассчитанные значения количества пикселей;

на Фиг.5 представлены исследования образца парателлурита, где а- коноскопические изображения области в центре оптического элемента, б - коноскопические изображения области вблизи края оптического элемента, в- картина интерфейса программного обеспечения, включающего результирующее изображение и рассчитанные значения количества пикселей.

Способ заключается в анализе интерференционных картин, полученных в процессе прохождения конического пучка лазерного излучения через материал и сложения амплитуд обыкновенных и необыкновенных волн, с помощью вычитания изображений по параметрам RGB (аддитивной цветовой модели) для выявления областей с отличающимися коэффициентами преломления от средних по объему, а также определения внешнего влияния на оптическую однородность.

Получаемые коноскопические изображения в случае абсолютно однородного материала (отсутствие дефектов и плоскопараллельность) будут идентичны по размеру и распределению интенсивности, что явно следует из законов геометрической оптики. При наличии дефектов коноскопические изображения будут отличаться.

С точки зрения компьютерных технологий, изображения (коноскопические картины), зафиксированные с помощью цифровой камеры, представляют собой данные в растровом виде, т.е. записываются в виде массива [N,M,RNM,GNM,BNM], где N,M – значения координат пикселя, R,G,B – значения параметров аддитивной цветовой модели, соответствующие координатам пикселя. RGB (0,0,0) соответствуют черному цвету.

Произведя вычитание значений RGB для одинаковых, с точки зрения координат, пикселей полученных изображений, мы получаем результирующий массив (изображение), где пиксели со значениями RGB отличными от (0,0,0) будут соответствовать неоднородным областям оптических элементов.

Найдя отношение количества пикселей со значением RGB (0,0,0) N0 к общему значению пикселей изображения N, можно получить количественную величину характеризующую однородность образца, независящую от оптической системы и от разрешения ПЗС матрицы.

, (1)

где k принимает значения в диапазоне от 0 до 1, значение 1 соответствует случаю идеального кристалла.

Способ осуществляется следующим образом:

Собирается оптическая схема для лазерной коноскопии с использованием собирающей линзы с фокусом в центре предметного столика (Фиг.1) Исследуемый образец помещается на предметный столик и регистрируются коноскопические картины в двух положениях относительно оптической схемы (Фиг.2,3). Вычисляется значение показателя степени однородности k (отношение количества пикселей со значением RGB (0,0,0) к общему значению пикселей изображения), делается вывод об однородности исследуемого объема образца и возможности его использования в оптических устройствах.

Примеры реализации способа.

Пример 1. Исследовался образец, вырезанный из монокристалла парателлурита в направлении <111>. Размеры образца 20*20*10мм, плотность дислокаций - 103-4∙103 см-2.

В качестве источника излучения, использовался белый диод с поляризатором от ЖК-матрицы. В результате получена коноскопическая картина описанного образца (Фиг.4а). Вычитание и расчеты производились с помощью специализированного программного обеспечения (ПО), использующего алгоритмы, предложенные в настоящем изобретении. Определен объем образца с повышенной плотностью дислокаций (Фиг.4б), найдено значение параметра однородности k=0,7475, что позволяет сделать вывод о невозможности использования данного монокристаллического элемента в оптических устройствах.

Пример 2. Исследовался светозвукопровод для акустооптического устройства из монокристалла парателлурита с углом между нормалью к поверхности и оптической осью 7°. Размеры образца 18*24*15мм. Сравнивались коноскопические изображения двух областей: в центре элемента (Фиг.5а) и вблизи края элемента (Фиг.5б).

В качестве источника излучения, использовался полупроводниковый лазер. Вычитание и расчеты производились с помощью специализированного ПО, использующего алгоритмы, предложенные в настоящем изобретении (Фиг.5в). Значение параметра однородности k=0,7428. Разность коноскопических картин обусловлена механическими напряжениями (искажение коэффициентов преломления) вблизи края элемента, что накладывает ограничения на размеры области акустооптического взаимодействия.

Таким образом, заявляемый способ позволяет дать численную оценку степени однородности оптических элементов по объему в виде относительного параметра, вычисляемого при сравнении коноскопических картин, полученных при различных положениях образца относительно оптической системы, без использования эталона, физических или химических воздействий на кристалл, минимизируя влияние искажений, обусловленных оптической системой.

Способ определения степени однородности одноосных кристаллов, включающий регистрацию интерференционных картин методом лазерной коноскопии в различных положениях образца относительно оптической системы, их анализ с помощью специализированного программного обеспечения, отличающийся тем, что в процессе анализа производят попиксельное вычитание полученных изображений друг из друга по параметрам RGB с формированием результирующего массива значений, из данного массива определяют количество пикселей со значениями RGB (0,0,0), вычисляют отношение k этого количества N к общему числу пикселей получаемого изображения N, где k=1 характеризует однородность идеального кристалла.
Способ определения степени однородности одноосных кристаллов
Способ определения степени однородности одноосных кристаллов
Способ определения степени однородности одноосных кристаллов
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
15.06.2019
№219.017.833e

Катализатор жидкофазного синтеза метанола и способ его получения

Изобретение относится к области производства гетерогенных катализаторов для процессов жидкофазного синтеза метанола. Катализатор жидкофазного синтеза метанола содержит носитель и цинк в качестве активного компонента. Согласно изобретению, в качестве носителя используют сверхсшитый полистирол со...
Тип: Изобретение
Номер охранного документа: 0002691451
Дата охранного документа: 14.06.2019
Показаны записи 21-25 из 25.
09.06.2018
№218.016.5d58

Способ оптической томографии прозрачных материалов

Изобретение относится к измерительной технике и области оптического приборостроения, а именно к неразрушающему контролю качества материалов, в частности к бесконтактным способам дефектоскопии прозрачных материалов. Сущность изобретения заключается в том, что в способе оптической томографии...
Тип: Изобретение
Номер охранного документа: 0002656408
Дата охранного документа: 05.06.2018
12.07.2018
№218.016.70b4

Способ получения слитка германия, очищенного от примесей

Изобретение относится к области цветной металлургии, в частности, к получению полупроводниковых материалов, и может быть использовано в производстве сырьевого германия, применяемого для выращивания монокристаллов для оптического применения. Слиток германия, очищенного от примесей, получают...
Тип: Изобретение
Номер охранного документа: 0002660788
Дата охранного документа: 09.07.2018
19.12.2019
№219.017.eeeb

Детектор лазерного излучения ик-диапазона

Изобретение относится к области оптико-электронного приборостроения и касается детектора лазерного излучения в ИК-диапазоне. Детектор содержит размещенный в корпусе и закреплённый в кристаллодержателе приемный элемент на основе полупроводникового монокристалла р-типа, электрически соединённые...
Тип: Изобретение
Номер охранного документа: 0002709413
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f027

Способ получения гелей для медицинских целей на основе l-цистеина, нитрата серебра и поливинилового спирта

Изобретение относится к получению гелей на основе L-цистеина, нитрата серебра и поливинилового спирта. Способ включает смешение водного раствора L-цистеина с водным раствором нитрата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,5 до 4,5 мМ, а отношение молярных...
Тип: Изобретение
Номер охранного документа: 0002709181
Дата охранного документа: 18.12.2019
12.04.2023
№223.018.4820

Способ получения макропористой пленки для регенеративной медицины на основе l-цистеина, нитрата серебра и поливинилового спирта

Изобретение относится к области фармацевтики и медицины, а именно к способу получения макропористой пленки для регенеративной медицины на основе L-цистеина, нитрата серебра и поливинилового спирта. Способ включает смешивание водного раствора L-цистеина с водным раствором нитрата серебра при...
Тип: Изобретение
Номер охранного документа: 0002746882
Дата охранного документа: 21.04.2021
+ добавить свой РИД