×
17.07.2019
219.017.b501

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТОЛСТОСЛОЙНЫХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ МЕТОДОМ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ НА ВЫСОКОКРЕМНИСТОМ АЛЮМИНИЕВОМ СПЛАВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано для тепловой защиты деталей объектов машиностроения, например поршней и головок блоков цилиндров двигателей внутреннего сгорания. Способ включает установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, представляющим собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышение напряжения до возникновения микродугового разряда на поверхности детали, при этом микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10-17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250-350 В. Технический результат: повышение толщины оксидного керамического покрытия и, соответственно, его теплозащитных свойств, на высококремнистых заэвтектических алюминиевых сплавах с содержанием кремния более 12%. 1 пр.

Изобретение относится к области электрохимической обработки поверхностей деталей из высококремнистых алюминиевых сплавов методом микродугового оксидирования (МДО) для создания толстослойных теплозащитных покрытий и может быть использовано для тепловой защиты деталей объектов машиностроения, например, поршней и головок блоков цилиндров двигателей внутреннего сгорания.

Известен способ микродугового оксидирования металлов и сплавов для получения декоративных и электроизоляционных покрытий, заключающийся в том, что оксидируемую деталь помещают в ванну-электролизер с перемешиваемым электролитом и подвергают обработке микродуговым оксидированием, перемешивание электролита производят мешалкой-электродом (патент РФ №2251595, МПК C25D 11/02, опубл. 10.05.2005 г). Этот способ при скорости перемешивания электролита 0,8-1 м/с и плотности тока 20 А/дм2 позволяет получить покрытия толщиной 225 мкм за 100 мин.

Недостатком этого способа является необходимость использования специальной мешалки-электрода, при этом скорость вращения мешалки должна быть определенной и подбираться в соответствии с конфигурацией покрываемой детали.

Известен способ получения толстослойных износостойких покрытий методом МДО для пар трения объектов машиностроения с целью увеличения их ресурса с повышенными значениями микротвердости и толщины(патент РФ №2541246, МПК C25D 11/02, опубл. 10.02.2015 г). Этот способ обеспечивае тполучение покрытия с большой толщиной с одновременным снижением трудоемкости и энергоемкости за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО. В этом методе, в качестве электролита используют водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 2,5 г/л, процесс микродугового оксидирования ведут в течение 2,5-3,5 часов при силе тока I=4,5÷42 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=200÷415 В. На алюминиевом сплаве АК12Д при таких режимах удается получить покрытие с микротвердостью Нμ=16 ГПа, и толщиной - 160 мкм.

Недостатком аналога является высокая трудоемкость процесса и невозможность получения толстослойных покрытий на заэвтектических алюминиевых сплавах с содержанием кремния более 12%.

Наиболее близким к заявляемому является способ получения толстослойных защитных покрытий с высокой адгезией на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродугового разряда на поверхности детали. Держатель детали снаружи, на границе «воздух - электролит»покрыт электроизоляционным материалом. В одном из вариантов осуществления изобретения используют электролит, содержащий смесь едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л с напряжением 700 В (патент РФ №2228973, МПК C25D 11/02, опубл. 20.05.2004 г).

Недостатком прототипа является высокая энергоемкость получения покрытия большой толщины ввиду необходимости обеспечения высокого напряжения, вплоть до 700 В, что увеличивает энергопотребление.

Задачей изобретения является получение толстослойных теплозащитных покрытий методом МДО для деталей объектов машиностроения с целью увеличения их теплостойкости, а также снижение трудоемкости и энергоемкости за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО.

Технический результат - повышение толщины оксидного керамического покрытия и, соответственно, его теплозащитных свойств, на высококремнистых заэвтектических алюминиевых сплавах с содержанием кремния более 12%.

Поставленная задача решается, а технический результат достигается способом получения толстослойных теплозащитных покрытий на высококремнистом сплаве микродуговым оксидированием, по которому устанавливают деталь в электролите на токопроводящем держателе, покрытом изоляционным материалом, создают рабочее напряжение между деталью и электролитом, представляющем собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышают напряжение до возникновения микродугового разряда на поверхности детали, согласно изобретению, микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10÷17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250÷350 В.

Технический результат заявляемого изобретения достигается благодаря следующему. Концентрация едкого калия и жидкого стекла 4 г/л выбрана исходя из результатов проведенных исследований по оптимизации процесса МДО, которые показали, что максимальную толщину и микротвердость МДО-слоя можно получить при указанной концентрации веществ, при длительности процесса 1,5-2 часа, при силе тока I=10÷17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250÷350 В.

Кроме того, выбранные параметры процесса МДО и концентрации веществ, входящих в состав электролита, обеспечивают снижение трудоемкости и энергоемкости получения покрытия.

Осуществление изобретения раскрыто в примере конкретной реализации.

Пример конкретной реализации способа.

Методом МДО было сформировано теплозащитное покрытие на лабораторном образце, изготовленном из заэвтектического алюминиевого сплава AlSi25CuNiMg (содержание кремния 25-26%).

Предлагаемый способ получения толстослойного теплозащитного покрытия реализован с использованием установки МДО, которая состоит из ванны, заполненной электролитом, в которую погружают катод и анод (функцию анода выполняет лабораторный образец из алюминиевого сплава), затем через них пропускают электрический ток.

Электролит состоит из дистиллированной воды с добавлением 4 г/л КОН и 4 г/л Na2SiO3(жидкое стекло). МДО - обработку ведут в течение 1,5-2 часов. Процесс оксидирования протекает при силе тока на аноде и катоде I=10÷17 А. В процессе обработки контролируются следующие параметры процесса:

Ia - сила тока на аноде,

Ik - сила тока на катоде,

Ua - падение напряжения на аноде,

Uk-падение напряжения на катоде,

t - температура электролита.

В процессе обработки эти параметры имели следующие значения:

Ia=10÷17 А

Ik=10÷17 A

Ua=270÷292 B

Uk=50÷105 B

t=25÷48°C.

После обработки образца по заявляемому способу максимальная толщина слоя составила 283 мкм. По сравнению с прототипом, у которого толщина слоя составляет 140 мкм, по заявляемому способу получено покрытие большей толщины и, соответственно, теплостойкости.

Таким образом, предложенное изобретение позволяет получить толстослойное теплозащитное покрытие методом МДО с повышенными значениями толщины, а также снизить энергоемкость за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО.

Способ получения толстослойных теплозащитных покрытий на высококремнистом алюминиевом сплаве микродуговым оксидированием, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, представляющим собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышение напряжения до возникновения микродугового разряда на поверхности детали, отличающийся тем, что микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10-17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250-350 В.
Источник поступления информации: Роспатент

Показаны записи 101-110 из 146.
15.10.2019
№219.017.d5d3

Установка автоматического предотвращения взрыва газовоздушной смеси

Изобретение относится к установке автоматического предотвращения взрыва газовоздушной смеси. Техническим результатом является локализация газовоздушного облака вблизи колонны и снижение концентрации парогазовоздушной смеси. Установка автоматического предотвращения взрыва газовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002702788
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5ea

Импульсный регулятор постоянного напряжения

Изобретение относится к области силовой электроники и может быть использовано, например, в источниках питания для многоуровневых автономных инверторов напряжения, электротехнологических установок микродугового оксидирования вентильных металлов и сплавов, электроэрозионной обработки сверхтвердых...
Тип: Изобретение
Номер охранного документа: 0002702762
Дата охранного документа: 11.10.2019
19.11.2019
№219.017.e3b8

Магнитоэлектродегидратор

Изобретение относится к аппаратам для обезвоживания и обессоливания нефти и очистки нефтепродуктов и может быть использовано в нефтяной и нефтеперерабатывающей промышленности. Магнитоэлектродегидратор содержит корпус, источник питания, электроды. Содержит герметично закрепленную с нижней...
Тип: Изобретение
Номер охранного документа: 0002706316
Дата охранного документа: 15.11.2019
24.11.2019
№219.017.e5bc

Способ штамповки заготовок с ультрамелкозернистой структурой из двухфазных титановых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок из титановых двухфазных сплавов. Заготовку подвергают термической обработке для получения дуплексной структуры с объемной долей зерен первичной α-фазы не более 30%. Затем пластически...
Тип: Изобретение
Номер охранного документа: 0002707006
Дата охранного документа: 21.11.2019
24.11.2019
№219.017.e60c

Статор электрической машины с жидкостным охлаждением (варианты)

Изобретение относится к области электромашиностроения, в частности к высокооборотным электрическим машинам. Технический результат - повышение эффективности охлаждения и снижение тепловой заметности электрических машин. Беспазовый статор электрической машины с жидкостным охлаждением содержит...
Тип: Изобретение
Номер охранного документа: 0002706802
Дата охранного документа: 21.11.2019
13.12.2019
№219.017.ed26

Способ формирования перфорационных отверстий на пере полой лопатки турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий на лопатках из жаропрочных сплавов путем удаления дефектного слоя локальной электрохимической обработкой. Способ включает прожиг отверстий на пере...
Тип: Изобретение
Номер охранного документа: 0002708723
Дата охранного документа: 11.12.2019
18.12.2019
№219.017.ee62

Способ получения алюминиевых композитных проводов, армированных длинномерным волокном

Изобретение относится к области машиностроения и предназначено для изготовления длинномерных композитных изделий на основе керамических, борных или углеродных волокон. В способе получения алюминиевых композитных проводов, армированных длинномерным волокном, в котором волокно с катушек...
Тип: Изобретение
Номер охранного документа: 0002709025
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee6d

Электромеханический преобразователь энергии с зубцовой концентрической обмоткой

Изобретение относится к области электромашиностроения и может быть использовано в автономных системах электроснабжения, а также в авиационной отрасли в качестве стартер-генератора. Технический результат - минимизация колебаний частоты вращения и электромагнитного момента при номинальном режиме...
Тип: Изобретение
Номер охранного документа: 0002709024
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee94

Многофазная стержневая волновая обмотка статора асинхронного двигателя

Изобретение относится к области электротехники и может быть использовано при конструировании асинхронных электрических двигателей, питаемых от преобразователей частоты. Технический результат: повышение технологичности и улучшение охлаждения волновой обмотки. Шихтованный магнитопровод статора...
Тип: Изобретение
Номер охранного документа: 0002709095
Дата охранного документа: 16.12.2019
25.12.2019
№219.017.f211

Система электроснабжения летательного аппарата

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов. Система электроснабжения летательного аппарата содержит приводной авиационный двигатель, генератор, выводные концы которого...
Тип: Изобретение
Номер охранного документа: 0002710037
Дата охранного документа: 24.12.2019
Показаны записи 1-5 из 5.
10.02.2015
№216.013.2641

Способ получения толстослойных износостойких покрытий методом микродугового оксидирования

Изобретение относится к области гальванотехники, а именно к электрохимической обработке поверхностей металлов и сплавов методом микродугового оксидирования (МДО), для создания толстослойных износостойких покрытий и может быть использовано для упрочнения деталей из алюминиевых сплавов объектов...
Тип: Изобретение
Номер охранного документа: 0002541246
Дата охранного документа: 10.02.2015
27.06.2015
№216.013.5b43

Ведомый шкив клиноремённого вариатора

Изобретение относится к машиностроению и может быть использовано в бесступенчатых регулируемых передачах с гибкой связью. Ведомый шкив клиноременного вариатора содержит вал, подвижный и неподвижный в осевом направлении конические диски, имеющие возможность совместного окружного перемещения,...
Тип: Изобретение
Номер охранного документа: 0002554904
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.7262

Стенд для исследования теплового состояния поршней двухтактных двигателей внутреннего сгорания

Изобретение относится к испытательным стендам и может быть использовано преимущественно в ходе научно-исследовательских и опытно-конструкторских работ, а также в период доводки двигателей внутреннего сгорания. Стенд для исследования теплового состояния поршней двигателей внутреннего сгорания...
Тип: Изобретение
Номер охранного документа: 0002560852
Дата охранного документа: 20.08.2015
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.bc8f

Способ тепловой защиты поршня двигателя внутреннего сгорания из алюминиевых сплавов

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов. Способ тепловой защиты поршня двигателя внутреннего сгорания включает нанесение теплоизолирующего покрытия на...
Тип: Изобретение
Номер охранного документа: 0002616146
Дата охранного документа: 12.04.2017
+ добавить свой РИД