×
17.07.2019
219.017.b501

СПОСОБ ПОЛУЧЕНИЯ ТОЛСТОСЛОЙНЫХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ МЕТОДОМ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ НА ВЫСОКОКРЕМНИСТОМ АЛЮМИНИЕВОМ СПЛАВЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области гальванотехники и может быть использовано для тепловой защиты деталей объектов машиностроения, например поршней и головок блоков цилиндров двигателей внутреннего сгорания. Способ включает установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, представляющим собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышение напряжения до возникновения микродугового разряда на поверхности детали, при этом микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10-17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250-350 В. Технический результат: повышение толщины оксидного керамического покрытия и, соответственно, его теплозащитных свойств, на высококремнистых заэвтектических алюминиевых сплавах с содержанием кремния более 12%. 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к области электрохимической обработки поверхностей деталей из высококремнистых алюминиевых сплавов методом микродугового оксидирования (МДО) для создания толстослойных теплозащитных покрытий и может быть использовано для тепловой защиты деталей объектов машиностроения, например, поршней и головок блоков цилиндров двигателей внутреннего сгорания.

Известен способ микродугового оксидирования металлов и сплавов для получения декоративных и электроизоляционных покрытий, заключающийся в том, что оксидируемую деталь помещают в ванну-электролизер с перемешиваемым электролитом и подвергают обработке микродуговым оксидированием, перемешивание электролита производят мешалкой-электродом (патент РФ №2251595, МПК C25D 11/02, опубл. 10.05.2005 г). Этот способ при скорости перемешивания электролита 0,8-1 м/с и плотности тока 20 А/дм2 позволяет получить покрытия толщиной 225 мкм за 100 мин.

Недостатком этого способа является необходимость использования специальной мешалки-электрода, при этом скорость вращения мешалки должна быть определенной и подбираться в соответствии с конфигурацией покрываемой детали.

Известен способ получения толстослойных износостойких покрытий методом МДО для пар трения объектов машиностроения с целью увеличения их ресурса с повышенными значениями микротвердости и толщины(патент РФ №2541246, МПК C25D 11/02, опубл. 10.02.2015 г). Этот способ обеспечивае тполучение покрытия с большой толщиной с одновременным снижением трудоемкости и энергоемкости за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО. В этом методе, в качестве электролита используют водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 2,5 г/л, процесс микродугового оксидирования ведут в течение 2,5-3,5 часов при силе тока I=4,5÷42 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=200÷415 В. На алюминиевом сплаве АК12Д при таких режимах удается получить покрытие с микротвердостью Нμ=16 ГПа, и толщиной - 160 мкм.

Недостатком аналога является высокая трудоемкость процесса и невозможность получения толстослойных покрытий на заэвтектических алюминиевых сплавах с содержанием кремния более 12%.

Наиболее близким к заявляемому является способ получения толстослойных защитных покрытий с высокой адгезией на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродугового разряда на поверхности детали. Держатель детали снаружи, на границе «воздух - электролит»покрыт электроизоляционным материалом. В одном из вариантов осуществления изобретения используют электролит, содержащий смесь едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л с напряжением 700 В (патент РФ №2228973, МПК C25D 11/02, опубл. 20.05.2004 г).

Недостатком прототипа является высокая энергоемкость получения покрытия большой толщины ввиду необходимости обеспечения высокого напряжения, вплоть до 700 В, что увеличивает энергопотребление.

Задачей изобретения является получение толстослойных теплозащитных покрытий методом МДО для деталей объектов машиностроения с целью увеличения их теплостойкости, а также снижение трудоемкости и энергоемкости за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО.

Технический результат - повышение толщины оксидного керамического покрытия и, соответственно, его теплозащитных свойств, на высококремнистых заэвтектических алюминиевых сплавах с содержанием кремния более 12%.

Поставленная задача решается, а технический результат достигается способом получения толстослойных теплозащитных покрытий на высококремнистом сплаве микродуговым оксидированием, по которому устанавливают деталь в электролите на токопроводящем держателе, покрытом изоляционным материалом, создают рабочее напряжение между деталью и электролитом, представляющем собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышают напряжение до возникновения микродугового разряда на поверхности детали, согласно изобретению, микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10÷17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250÷350 В.

Технический результат заявляемого изобретения достигается благодаря следующему. Концентрация едкого калия и жидкого стекла 4 г/л выбрана исходя из результатов проведенных исследований по оптимизации процесса МДО, которые показали, что максимальную толщину и микротвердость МДО-слоя можно получить при указанной концентрации веществ, при длительности процесса 1,5-2 часа, при силе тока I=10÷17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250÷350 В.

Кроме того, выбранные параметры процесса МДО и концентрации веществ, входящих в состав электролита, обеспечивают снижение трудоемкости и энергоемкости получения покрытия.

Осуществление изобретения раскрыто в примере конкретной реализации.

Пример конкретной реализации способа.

Методом МДО было сформировано теплозащитное покрытие на лабораторном образце, изготовленном из заэвтектического алюминиевого сплава AlSi25CuNiMg (содержание кремния 25-26%).

Предлагаемый способ получения толстослойного теплозащитного покрытия реализован с использованием установки МДО, которая состоит из ванны, заполненной электролитом, в которую погружают катод и анод (функцию анода выполняет лабораторный образец из алюминиевого сплава), затем через них пропускают электрический ток.

Электролит состоит из дистиллированной воды с добавлением 4 г/л КОН и 4 г/л Na2SiO3(жидкое стекло). МДО - обработку ведут в течение 1,5-2 часов. Процесс оксидирования протекает при силе тока на аноде и катоде I=10÷17 А. В процессе обработки контролируются следующие параметры процесса:

Ia - сила тока на аноде,

Ik - сила тока на катоде,

Ua - падение напряжения на аноде,

Uk-падение напряжения на катоде,

t - температура электролита.

В процессе обработки эти параметры имели следующие значения:

Ia=10÷17 А

Ik=10÷17 A

Ua=270÷292 B

Uk=50÷105 B

t=25÷48°C.

После обработки образца по заявляемому способу максимальная толщина слоя составила 283 мкм. По сравнению с прототипом, у которого толщина слоя составляет 140 мкм, по заявляемому способу получено покрытие большей толщины и, соответственно, теплостойкости.

Таким образом, предложенное изобретение позволяет получить толстослойное теплозащитное покрытие методом МДО с повышенными значениями толщины, а также снизить энергоемкость за счет оптимально подобранной концентрации веществ, входящих в состав электролита, и оптимальных параметров процесса МДО.

Способ получения толстослойных теплозащитных покрытий на высококремнистом алюминиевом сплаве микродуговым оксидированием, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, представляющим собой водный раствор едкого калия и жидкого стекла при концентрации каждого вещества 4 г/л, повышение напряжения до возникновения микродугового разряда на поверхности детали, отличающийся тем, что микродуговое оксидирование проводят в течение 1,5-2,0 часов при силе тока I=10-17 А, соотношении анодного и катодного тока 1:1 и напряжении на аноде Ua=250-350 В.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 146.
26.08.2017
№217.015.edc7

Способ изготовления комбинированной полой лопатки турбомашины из алюминиевого сплава

Изобретение относится к способам изготовления лопаток турбомашин. Способ изготовления полой лопатки турбомашины из алюминиевого сплава заключается в формировании элементов спинки и корыта лопатки путем придания пластинам из алюминиевого сплава заданного профиля и размеров, их фиксации,...
Тип: Изобретение
Номер охранного документа: 0002628843
Дата охранного документа: 22.08.2017
29.12.2017
№217.015.f0b8

Способ диагностики помпажа компрессора газотурбинного двигателя и устройство для его реализации

Группа изобретений относится к способу диагностики помпажа компрессора газотурбинного двигателя и устройству для диагностики помпажа компрессора газотурбинного двигателя. Техническим результатом является повышение достоверности и быстродействия определения начала помпажа на всех режимах работы...
Тип: Изобретение
Номер охранного документа: 0002638896
Дата охранного документа: 18.12.2017
19.01.2018
№218.016.02c3

Способ управления стартер-генератором, интегрированным в газотурбинный двигатель, при коротком замыкании

Изобретение относится к области энергомашиностроения и может быть использовано в авиационных стартер-генераторах, интегрированных в авиационный газотурбинный двигатель. Технический результат: стабильная работа системы защиты от короткого замыкания в стартер-генераторе при высокой температуре...
Тип: Изобретение
Номер охранного документа: 0002630285
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.05f3

Электропривод летательного аппарата (варианты)

Группа изобретений относится к авиакосмическим летательным аппаратам. Электропривод для летательного аппарата содержит корпус, шарико-винтовую пару, состоящую из гайки и винта, аксиальный подшипник, электродвигатель, зубчатую передачу, датчик положения ротора, демпфер и систему управления....
Тип: Изобретение
Номер охранного документа: 0002630966
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0c45

Форсунка с ультразвуковым излучателем

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложена топливная форсунка для ДВС, содержащая составной корпус 1 с топливным каналом высокого давления 7, распылитель 3 с иглой 2, штангу 5. В верхней части корпуса 1 форсунки закреплен...
Тип: Изобретение
Номер охранного документа: 0002632639
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.10cf

Способ низкотемпературного ионного азотирования титановых сплавов

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002633867
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.153d

Устройство защиты от короткого замыкания высокотемпературного стартер-генератора обращённой конструкции

Использование: в области электротехники. Технический результат: защита от короткого замыкания стартер-генератора обращенной конструкции в составе газотурбинного двигателя в температурном режиме до 450°С за счет механического расцепления статора с неподвижным стержнем, сопровождающегося...
Тип: Изобретение
Номер охранного документа: 0002634836
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1b7e

Гибридный магнитный подшипник с использованием сил лоренца (варианты)

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные...
Тип: Изобретение
Номер охранного документа: 0002636629
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1d36

Способ изготовления полой лопатки газотурбинного двигателя

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления полой лопатки вентилятора газотурбинного двигателя из титанового сплава. Используют трехслойные заготовки обшивок и/или заполнителя, причем внешние слои заготовок выполняют из титанового...
Тип: Изобретение
Номер охранного документа: 0002640692
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d3f

Способ упрочнения и формирования винтового арматурного стержня

Изобретение относится к области упрочнения и формирования винтового профиля, в частности арматурных стержней, используемых для изготовления железобетонных элементов. Способ включает скручивание арматурной заготовки вокруг своей продольной оси. Повышение прочности арматурных стержней...
Тип: Изобретение
Номер охранного документа: 0002640705
Дата охранного документа: 11.01.2018
Показаны записи 1-5 из 5.
10.02.2015
№216.013.2641

Способ получения толстослойных износостойких покрытий методом микродугового оксидирования

Изобретение относится к области гальванотехники, а именно к электрохимической обработке поверхностей металлов и сплавов методом микродугового оксидирования (МДО), для создания толстослойных износостойких покрытий и может быть использовано для упрочнения деталей из алюминиевых сплавов объектов...
Тип: Изобретение
Номер охранного документа: 0002541246
Дата охранного документа: 10.02.2015
27.06.2015
№216.013.5b43

Ведомый шкив клиноремённого вариатора

Изобретение относится к машиностроению и может быть использовано в бесступенчатых регулируемых передачах с гибкой связью. Ведомый шкив клиноременного вариатора содержит вал, подвижный и неподвижный в осевом направлении конические диски, имеющие возможность совместного окружного перемещения,...
Тип: Изобретение
Номер охранного документа: 0002554904
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.7262

Стенд для исследования теплового состояния поршней двухтактных двигателей внутреннего сгорания

Изобретение относится к испытательным стендам и может быть использовано преимущественно в ходе научно-исследовательских и опытно-конструкторских работ, а также в период доводки двигателей внутреннего сгорания. Стенд для исследования теплового состояния поршней двигателей внутреннего сгорания...
Тип: Изобретение
Номер охранного документа: 0002560852
Дата охранного документа: 20.08.2015
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.bc8f

Способ тепловой защиты поршня двигателя внутреннего сгорания из алюминиевых сплавов

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов. Способ тепловой защиты поршня двигателя внутреннего сгорания включает нанесение теплоизолирующего покрытия на...
Тип: Изобретение
Номер охранного документа: 0002616146
Дата охранного документа: 12.04.2017
+ добавить свой РИД