×
14.07.2019
219.017.b451

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной плотности тока не более 1,0 А/см и катодной плотности тока не более 0,9 А/см. Обеспечивается увеличение производительности с одновременным снижением удельного расхода электроэнергии и удешевлением известного способа электролитического получения алюминия и низкая скорость коррозии электродных материалов, в частности инертных анодов. 2 з.п.ф-лы, 1 ил, 1 табл.

Настоящее изобретение относится к цветной металлургии, в частности к производству алюминия электролизом расплавленных солей.

В настоящее время алюминий получают электролизом криолит-глиноземного расплава (Hall-Heroult process) при температурах 950÷970°С. Электролит представляет собой расплав фторидных солей (NaF, A1F3, CaF2, MgF2 и др.), содержащий растворенный глинозем, а в качестве анодов используют углеродсодержащие материалы [Ю.В.Борисоглебский, Г.В.Галевский, Н.М.Кулагин и др. Металлургия алюминия. Новосибирск: Наука. Сибирская издательская фирма РАН, 1999, 438 с.]. Глинозем подвергается электролитическому разложению с выделением алюминия на катоде и СО, СO2 на аноде.

Недостатком известного способа является высокая температура процесса 950÷970°С, при которой оксидно-фторидный расплав представляет собой чрезвычайно агрессивную среду, существенно ограничивающую выбор электродных и футеровочных материалов из-за их высокой скорости коррозии.

Известен способ (патент US 5006209) получения алюминия при температуре 730÷760°С в электролите на основе эвтектик NaF-AlF3 или KF-A1F3 с добавлением LiF и содержащем суспензию глинозема (А12O3=65 мас.%). Во время электролиза электролит, содержащий суспензию А12O3, перемешивается пузырьками газа, выделяющимися на аноде и в газогенераторе на дне ванны. Чередующиеся инертные аноды и катоды расположены вертикально для лучшей циркуляции электролита.

Недостатки известного способа связаны с наличием суспензии глинозема в электролите, к ним относятся: высокое сопротивление электролита (в том числе из-за медленного удаления анодных газов из межэлектродного пространства), а также оседание глинозема и его перемешивание с образующимся на вертикальных катодах алюминием. Высокое сопротивление электролита приводит к увеличению потребления электроэнергии и повышению температуры рабочего пространства.

Наиболее близким (прототипом) по совокупности существенных признаков к заявляемому изобретению является способ электролитического получения алюминия (заявка RU 2006119476) в расплаве A1F3-KF, в котором A1F3 присутствует в мольном отношении к KF более 1:1, при температуре 660÷1000°С. Электролит содержит растворенный глинозем 2÷6 мас.%.

Основным недостатком данного изобретения является изменение состава электролита при длительной работе электролизной ванны из-за накопления натрия, являющегося заметной примесью в глиноземе. Увеличение концентрации NaF от 0 до 6,0 мас.% существенным образом изменяет физико-химические свойства электролита (электропроводность, температуру ликвидуса и др.). В связи с этим необходима технологическая стадия очистки электролита от натрия и/или изменение существующей технологии производства глинозема, что требует значительных капитальных затрат.

Значительное снижение температуры электролиза существенно ограничивает максимальные катодную и анодную плотности тока, главным образом, из-за снижения скорости растворения глинозема, который расходуется в процессе электролиза, и изменения состава электролита в приэлектродной области, приводящего к образованию твердого осадка соли на поверхности электродов (солевой пассивации). Из-за значительного увеличения локальной анодной и катодной плотности тока эти процессы приводят: на аноде - к увеличению скорости коррозии инертных анодов, на катоде - к разряду ионов Na+ и К+ и загрязнению алюминия. Вследствие увеличения сопротивления электролизной ванны повышается потребление электроэнергии и снижается производительность.

Общими признаками прототипа и заявленного способа является электролиз расплава на основе A1F3-KF с добавками глинозема при температуре 700÷900°С.

Технической задачей предлагаемого изобретения является повышение производительности с одновременным удешевлением известного способа электролитического получения алюминия.

Поставленная задача достигается за счет того, что в известном способе получения алюминия электролизом расплава KF-A1F3 с добавкой А12O3 при температуре 700÷900°С в расплав предварительно добавляют NaF при следующем соотношении компонентов, мас.%: фторид калия (KF) - 8,0÷52,0; фторид натрия (NaF) - 6,0÷40,0; фторид алюминия (A1F3) - остальное, при этом поддерживают мольное отношение (KF+NaF)/AlF3 от 1,1 до 1,9. Во время электролиза поддерживают анодную плотность тока не более 1,0 А/см2 и катодную плотность тока не более 0,9 А/см2. В качестве анода используют углеродсодержащие материалы либо инертные: металлы, металлические сплавы, оксиды металлов и керметы (см. Таблицу 1).

Для каждого состава электролита с криолитовым (мольным) отношением (KF+NaF)/AlF3 от 1,1 до 1,9 поддерживают температуру электролиза, соответствующую области ликвидуса в интервале 700-900°С. При электролизе расплава с криолитовым отношением (KF+NaF)/AlF3 менее 1,1 увеличиваются расход углеродных и скорость коррозии инертных анодов из-за уменьшения растворимости и скорости растворения глинозема (Таблица 1, примеры 1 и 9). При электролизе расплава с криолитовым отношением более 1,9 (который обладает температурой ликвидуса выше 900°С) увеличивается скорость коррозии инертных анодов из-за высокой температуры электролита (Таблица 1, пример 10). Увеличение анодной плотности тока более 1,0 А/см2 увеличивает скорость коррозии инертных анодов и приводит к солевой пассивации анода (Таблица 1, пример 3). Увеличение катодной плотности тока более 0,9 А/см2 приводит к солевой пассивации катода (Таблица 1, пример 4). При солевой пассивации электродов увеличивается потребление электроэнергии и снижается производительность электролизной ванны.

Примеры конкретного выполнения изобретения представлены в таблице 1.

Электролиз криолит-глиноземного расплава проводят в открытой электролизной ячейке на воздухе. Смесь солей KF-NaF-AlF3 с мольным отношением (KF+NaF)/AlF3 от 1,1 до 1,9 нагревают в печи сопротивления. Глинозем добавляют в электролит после плавления и регулярно в ходе электролиза по мере его расходования. Электролиз ведут в гальваностатическом режиме при анодной плотности тока не более 1,0 А/см2 и катодной плотности тока не более 0,9 А/см2 при температуре 700÷900°С. В качестве анодов используют различные углеродные и инертные материалы. Были использованы следующие конструкции катодов:

1. Расплав алюминия, находящийся на графитовой подложке, которую помещали на дно контейнера.

2. Вертикальные полупогруженные образцы TiB2 прямоугольной формы.

На чертеже показана зависимость сопротивления цепи анода, потенциала анода относительно алюминиевого электрода сравнения и напряжения на электролизной ванне от анодной плотности тока во время электролиза расплава KF(37,8)-Na(8,0)-AlF3(54,2)-Al2O3нac (мас.%) (КО=1,3) при температуре 780°С с использованием анода из электродного графита ЭГ-0 (Таблица 1, пример 3). Из рисунка видно, что в данных условиях электролиза при анодной плотности тока более 1,0 А/см2 происходит увеличение напряжения на ванне вследствие роста сопротивления анода. На солевую пассивацию указывали рост сопротивления электродов и образование твердого осадка, состоящего из A1F3 на аноде и K3A1F6 (Na3AlF6) на катоде.

Существенного увеличения концентрации NaF в объеме расплава из-за поступления примеси Na+ с глиноземом в ходе длительного электролиза не происходило. В связи с этим не требовалось корректировки состава электролита и параметров электролиза. Явлений солевой пассивации электродов из-за изменения состава электролита в приэлектродном слое в предлагаемых изобретением условиях не наблюдалось.

Максимальная катодная плотность тока 0,9 A/см2 ограничена явлениями солевой пассивации из-за локального изменения состава электролита в прикатодном слое.

Максимальная анодная плотность тока 1,0 А/см2 ограничена явлениями солевой пассивации, а также минимальной допустимой скоростью коррозии инертного анода.

Таким образом, при электролизе расплава KF-NaF-AlF3, содержащего фторид калия (KF) в количестве от 8,0 до 52,0 мас.%, фторид натрия (NaF) в количестве от 6,0 до 40,0 мас.% и фторид алюминия (A1F3) - остальное, при мольном отношении (KF+NaF)/AlF3 от 1,1 до 1,9 при температуре 700÷900°С не наблюдается явлений солевой пассивации электродов и катастрофической (>10 см/год) коррозии инертных анодов, если анодная плотность тока не превышает 1,0 А/см2, а катодная плотность тока не превышает 0,9 А/см2. Предлагаемый способ обеспечивает низкое потребление электроэнергии, увеличивает срок службы углеродных и инертных анодов и повышает производительность, что приводит к удешевлению способа электролитического получения алюминия.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 68.
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.cf33

Электролизер для производства алюминия

Изобретение относится к электролизеру для производства алюминия с биполярными электродами. Электролизер содержит корпус с боковой и подовой футеровкой, концевые аноды и катоды, размещенные на противоположных сторонах корпуса электролизера, и вертикально установленные между ними нерасходуемые...
Тип: Изобретение
Номер охранного документа: 0002621084
Дата охранного документа: 31.05.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.664b

Способ получения лигатур алюминия с цирконием

Изобретение относится к области цветной металлургии и может быть использовано при получении лигатуры Al-Zr электрохимическим способом, пригодной для промышленного производства. В качестве источника циркония используют оксид циркония, который смешивают с солевой смесью, содержащей оксид...
Тип: Изобретение
Номер охранного документа: 0002658556
Дата охранного документа: 21.06.2018
28.06.2018
№218.016.688a

Электрохимический способ получения порошков гексаборидов стронция и бария

Изобретение относится к способу получения порошков гексаборидов стронция и бария, включающему электролиз солевого расплава, содержащего смесь соли получаемого гексаборида с борсодержащим компонентом. При этом электролиз ведут с использованием молибденового катода и графитового анода. Способ...
Тип: Изобретение
Номер охранного документа: 0002658835
Дата охранного документа: 25.06.2018
06.07.2018
№218.016.6cc7

Способ соединения трубчатых топливных элементов

Изобретение относится к технологиям сборки конструкции подблоков трубчатых топливных элементов. Способ включает последовательное соединение топливных элементов, содержащих несущую основу из электролита и нанесенные на нее слои электродов, посредством интерконнектора в виде ступенчатого кольца...
Тип: Изобретение
Номер охранного документа: 0002660124
Дата охранного документа: 05.07.2018
18.01.2019
№219.016.b08e

Способ электрохимического получения компактных слоев металлического рения

Изобретение относится к области электрохимического получения компактных слоев элементарного металлического рения из его соединений путем электролиза расплавов. Проводят электролиз ренийсодержащего компонента в расплаве солей, где в качестве ренийсодержащего компонента используют перренат калия....
Тип: Изобретение
Номер охранного документа: 0002677452
Дата охранного документа: 16.01.2019
+ добавить свой РИД