×
13.07.2019
219.017.b3bd

Результат интеллектуальной деятельности: СПОСОБ ФЛОТАЦИИ РУД РЕДКИХ МЕТАЛЛОВ И ОЛОВА

Вид РИД

Изобретение

№ охранного документа
0002381073
Дата охранного документа
10.02.2010
Аннотация: Изобретение относится к области обогащения полезных ископаемых методом флотации и может быть использовано при флотационном обогащении комплексных руд редких металлов и олова, в том числе содержащих топаз. Способ включает последовательную обработку пульпы реагентом - собирателем - эфиром фосфорсодержащего соединения общей формулы: [RO(CHO)]P(O)OM, где R - алкил С, алкил(С)фенил, М - Н, К, HN(CHCHOH), m=4-12, и сульфоксильным собирателем в соотношении (3:1)-(9:1) и выделение концентрата. В качестве сульфоксильного собирателя используют аминные соли алкилсульфатов общей формулы: ROSONH(CHCHOH) (R=C, n, m=1-3), аминные соли алкиларилсульфонатов общей формулы: RCHSONH(CHCHOH) (R=С, n, m=1-3), Аспарал Ф. Технический результат - повышение качества флотационного концентрата. 3 з.п. ф-лы, 2 ил., 6 табл.

Изобретение относится к области обогащения полезных ископаемых методом флотации и может быть использовано при флотационном обогащении комплексных руд редких металлов и олова, в том числе содержащих топаз.

Известны способы флотации редких металлов и олова, включающие применение таких собирателей, как: тетранатриевая соль N-сульфосукциноиласпарагиновой кислоты (Аспарал Ф), триэтаноламиновые соли алкилсульфатов (ТЭАСАС), аминные соли алкиларилсульфонатов (ААС), гидроксамовые кислоты (ИМ-50) (Шубов Л.Я., Иванков С.И., Щеглова Н.К. Флотационные реагенты в процессах обогащения минерального сырья: Справочник / под ред. Л.В.Кондратьевой. - М.: Недра, 1990, кн.1, 400 с.). Однако применение способов с использованием этих собирателей не обеспечивает удовлетворительных показателей флотации полезных минералов.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ флотации руд редких металлов и олова с использованием в качестве собирателя смеси алкоксиполи- алкиленоксидных моно-, ди- и триэфиров фосфорной кислоты или ее солей формулы:

где R - углеводородный радикал C1-C7, n=0-45, m=45-0, n+m=9-45, R'=H, СН3, С2Н5, k=1-3, R'' - водород или щелочной металл (А.с. СССР №1645024. / Способ флотации руд редких металлов и олова // Уткелов Б.А., Гак Т.Л., Абдурахманова И.К. и др., B03D 1/014. Опубл. в Б.И. 1991, №16).

Недостатками способа являются: низкое качество флотационного концентрата и отсутствие промышленного выпуска используемых собирателей.

Технический результат изобретения - повышение качества флотационного концентрата до уровня требований гидрометаллургической переработки с применением доступных промышленных отечественных собирателей.

Он достигается тем, что в предлагаемом способе флотации Ta-Nb-Sn руд пульпу последовательно обрабатывают эфиром фосфорорганического соединения общей формулы: [RO(C2H4O)m]2Р(O)ОМ, где R - алкил C4-20; алкил(С8-10)фенил, М - Н, К, НN(CH2CH2OH)3, m=4-12, и сульфоксильным собирателем в соотношении (3:1)-(9:1).

Отличие предлагаемого способа от способа-прототипа заключается, во-первых, в том, что в качестве фосфорорганических собирателей (ФОС) используют эфиры общей формулы: [RO(C2H4O)m]2Р(O)ОМ, где R - алкил С4-20, алкил(С8-10)фенил, М - Н, К, HN(CH2CH2OH)3, m=4-12, а в качестве сульфоксильного собирателя (СС) применяют ТЭАСАС, ААС или Аспарал Ф.

Другое существенное отличие состоит в том, что в заявляемом способе применяют ФОС и сульфоксильный собиратель совместно, т.к. в индивидуальном виде ни один из них не обеспечивает того качества концентрата, который необходим для последующей гидрометаллургической переработки.

Существенным отличительным признаком предлагаемого способа является также порядок подачи собирателей во флотационную пульпу. С помощью физико-химических методов анализа установлено, что роль основного собирателя выполняет ФОС, а СС усиливает его действие. По этой причине в пульпу сначала добавляют ФОС, а только потом сульфоксильный собиратель. При обратном порядке прибавления реагентов технологические показатели флотации ухудшаются.

Получение технологического результата при совместном применении ФОС и СС можно объяснить явлением синергетического эффекта: СС, являясь дополнительным собирателем, повышает активность действия ФОС в такой мере, что активность смеси превосходит сумму эффектов отдельно взятых компонентов.

ФОС и СС используют в соотношении (3:1)-(9:1), за пределами этих соотношений технологические показатели флотации снижаются.

Заявляемый способ может применяться как для флотационного обогащения Ta-Nb-Sn руд (фиг.1), так и для доводки гравитационных, флотационных концентратов (фиг.2) и других продуктов обогащения.

По флотационной схеме процесс проводят в две стадии: сначала в щелочной среде при pH пульпы 8,5-10,0 получают флотационный концентрат, а затем в кислой среде при pH 0,7-2,0 осуществляют его доводку, причем на каждой из этих стадий пульпу обрабатывают фосфорорганическим собирателем общей формулы: [RO(C2H4O)m]2P(O)OM, где R - алкил C4-20, алкил (C8-10) фенил, М - Н, К, HN(CH2CH2OH)3, m=4-12, и СС при соотношении реагентов (3:1)-(9:1), причем СС добавляют после введения ФОС (фиг.1).

Проведение щелочной флотации при осуществлении заявляемого способа позволяет вывести основную массу рудного материала в виде хвостов и значительно сократить количество материала, поступающего на доводку в кислой среде. Это приводит к значительной экономии реагентов (серной кислоты, соды, сокращает количество сточных вод и коррозионно-стойкого оборудования).

Концентраты щелочной флотации получают с высоким извлечением, но содержание Та2О5 в них лишь 0,15-0,30%, в то время как концентраты, поступающие на последующую гидрометаллургическую переработку, должны содержать не менее 7% Та.

Черновые гравитационные концентраты, полученные при обогащении Ta-Nb-Sn руд, так же как и флотационные концентраты щелочного цикла флотации содержат примеси кварца, полевых шпатов и топаза. Основные проблемы при доводке концентратов, получаемых из руд Этыкинского месторождения, создает топаз, т.к. он имеет близкие к ценным минералам физико-химические свойства и концентрируется вместе с ними.

Повышение качества гравитационных и флотационных концентратов до требуемого для гидрометаллургической переработки уровня достигается проведением флотационной доводки их в кислой среде: последовательной обработкой концентратов фосфорорганическим собирателем общей формулы: [RO(C2H4O)m]2P(O)ОМ, где R - алкил C4-20, алкил(C8-10)фенил, М - Н, К, HN(CH2CH2OH)3, m=4-12, и СС при соотношении реагентов (3:1)-(9:1) в интервале значений pH 0,7-2,0 (фиг.2).

Выбор интервала значений pH на этой стадии обусловлен тем, что использование pH выше 2,0 приводит к ухудшению селективности процесса, снижение pH ниже 0,7 требует неоправданно высокого расхода серной кислоты.

В качестве заявляемого фосфорорганического собирателя (ФОС) для флотации руд редких металлов и олова используют соединения общей формулы: [RO(C2H4O)m]2P(O)ОМ, где R - алкил С4-20, алкил (С8-10)фенил, М - Н, К, HN(CH2CH2OH)3, m=4-12.

Это могут быть, в частности, диалкиларилполиэтиленгликолевые эфиры фосфорной кислоты:

- Фосфенокс Н 6Б (Ф Н 6Б), R - алкил С6-9 фенил, М=К, m=6;

- Метекс (МТ), R - алкил С9 фенил, М=К, m=10;

- Фосфол 6 (Ф 6), R - алкил С9 фенил, М=Н, m=6;

- Фосфол 10 (Ф 10), R - алкил С9 фенил, М=Н, m=10;

- Фосфол 12 (Ф 12) R - алкил С9 фенил, М=Н, m=12;

- Фосфол 6Т (Ф 6Т) R - алкил С9 фенил, М=HN(CH2CH2OH)3, m=6;

- Фосфол 10Т (Ф 10Т), R - алкил С9 фенил, М=HN(CH2CH2OH)3, m=10;

- Фосфол 12Т (Ф 12Т) R - алкил С9 фенил, М=HN(CH2CH2OH)3, m=12 и диалкилполиэтиленгликолевые эфиры фосфорной кислоты:

- Оксифос Б (ОБ), R - алкил C8-10, М=К, m=6.

- Оксифос КД-6 (О КД-6), R - алкил С8-10, М=Н, m=6.

Все перечисленные реагенты выпускаются отечественной промышленностью на нескольких предприятиях в значительных объемах.

Диалкиларилполиэтиленгликолевые эфиры фосфорной кислоты, где R = алкил(С8-10)фенил, М - Н, К, N(CH2CH2OH)]3, m=4-12, находят применение в производстве моющих средств в качестве адгезионной добавки, в нефтедобывающей промышленности в качестве деэмульгатора, в тяжелой индустрии в качестве смазочного вещества, в кожевенной и меховой промышленности в качестве наполнителя, смачивающего, обезжиривающего и моющего средства с антистатическим эффектом, а также в химической и мебельной промышленности.

Нами соединения этого класса заявлены как собиратели для флотации флюоритовых руд (Патент РФ №2319550, 2008 г. Собиратель для флотации флюоритовых руд // Курков А.В., Пастухова И.В., В03D 1/014. Опубл. в Б.И. №8, 2008 г.). Для флотации редких металлов и олова эти реагенты до настоящего времени не использовались.

Диалкилполиэтиленгликолевые эфиры фосфорной кислоты общей формулы: [RO(CnH2nO)m]xP(O)OH3-x, где R - C8-20-алкил, алкенил, n=2-4, m=1-8, х=1-2, в виде щелочных, щелочно-земельных или аммониевых солей предложены для обогащения окисленных оловянных руд. Флотацию касситерита проводят ФОС, синтезированными на основе триоксиэтилированной смеси насыщенных спиртов C11-C15 при pH 2-7 (лучше 4) в присутствии ксиленола. (Пат. Великобритании №1451194, МКИ В03D, НКИ В2Н, 1976). Однако технологические показатели флотации руд редких металлов и олова, особенно в присутствии топаза, неудовлетворительны.

В качестве сульфоксильного собирателя применяют аминные соли алкилсульфатов общей формулы: ROSO3NHn(CH2CH2OH)m (R=C10-22, n, m=1-3) (ТЭАСАС); аминные соли алкиларилсульфонатов общей формулы: RC6H5SO3NHn(CH2CH2OH)m (R=C10-22, n, m=1-3) (ААС) или Аспарал Ф.

Таким образом, для достижения технического результата необходимо осуществление всей новой совокупности разработанных отличительных признаков предлагаемого способа.

Данное изобретение иллюстрируется примерами, в которых приведены результаты флотации тантала, ниобия и олова из комплексной редкометалльной руды, гравитационных и флотационных концентратов по заявляемому способу с применением собирателей МТ и СС и способу-прототипу с использованием собирателя - смеси фосфорнокислотного моно, ди- и триэфира бутоксиполиэтиленоксида (БПЭО): [С4Н9О (CH2CH2O)3O]2РО(ОН).

Пример 1. Флотация из комплексной Ta-Nb-Sn руды с использованием собирателей МТ и Аспарала Ф (флотационная схема).

Для проведения опытов была использована проба руды Этыкинского месторождения, характеристика которой приведена в табл.1.

Руду предварительно измельчают до содержания в готовом продукте измельчения (питании флотации) класса - 0,074 мм на уровне 60%.

Способ включает следующие операции:

Получение флотационного концентрата (pH 8,5-10,0);

- обработка пульпы содой (Na2CO3 0,5 кт/т);

- последовательная обработка пульпы ФОС (0,2 кг/т) и СС (0,05 кг/т);

- обработка аполярным маслом (0,1 кг/т);

щелочная флотация (15 мин) с получением грубого коллективного концентрата и выделением основной массы рудного материала в виде хвостов основного производства.

Доводка флотационного концентратора (pH 0,7-2,0):

- обработка грубого коллективного концентрата серной кислотой до pH 1,5 (2 кг/т) и регулятором флотации (аполярным маслом - 0,1 кг/т);

- последовательная обработка пульпы ФОС (0,1 кг/т) и СС (0,03 кг/т);

- обработка триполифосфатом (ТПФ - 0,3 кг/т кг/т);

- основная доводочная флотация (20 мин) с получением концентрата доводки.

Таблица 1
Химический и минеральный состав исходной пробы руды, %
Химический состав Минеральный состав
Компоненты Содержание Минералы Содержание
Та2О5 0,013 Колумбит 0,03
Nb2O5 0,023 Микролит 0,01
Sn 0,038 Касситерит 0,02
U 0,0019 Альбит 63,2
SiO2 69,12 Микроклин 13,3
Al2O3 13,54 Кварц 16,2
Fe2O3 2,8 Топаз 1,1
Mo 0,015 Слюда 1,3
WO3 0,02 Глинистые минералы 4,2
K2O 3,75 Сульфиды 0,02
Na2O 4,20 Циртолит 0,02
CaO 1,2 Флюорит, турмалин, амфиболы, пироксены зн.
п.п.п 5,2791 Вмещающие породы 0,60
Гидроокислы Fe и Mn зн.
ИТОГО 100,0 ИТОГО 100,0

На стадии получения флотационного концентрата испытано действие собирателей-аналогов (Аспарал Ф, ААС и ТЭАСАС), заявляемых ФОС в индивидуальном виде, а также совместное действие ФОС и СС. Результаты испытаний, приведенные в табл.2, позволяют сделать следующие выводы:

- самостоятельное применение как собирателей-аналогов, так и ФОС не обеспечивает достаточной полноты извлечения ценных минералов в щелочной среде;

- добавление СС к ФОС приводит к повышению избирательности флотации при минимальных его расходах;

- оптимальное соотношение ФОС и СС находится в пределах (3:1)-(9:1);

- оптимальный расход ФОС составляет 0,2 кг/т. При расходе ФОС меньше 0,2 кг/т извлечение полезных минералов в пенный продукт ниже, при расходе ФОС более 0,2 кг/т результаты флотации не улучшаются;

- для достижения максимального эффекта реагентов во флотационную пульпу СС подают после обработки пульпы ФОС;

- флотацию осуществляют при pH 8,5-10,0. При значениях pH ниже 8,5 резко падает извлечение полезных компонентов, при повышении pH выше 10,0 снижается извлечение и ухудшается качество получаемого концентрата;

- из результатов табл.2 следует, что использование заявляемых ФОС в сочетании с СС обеспечивает высокую (~ в 30 раз) степень концентрирования полезных компонентов, что позволяет сократить количество материала, поступающего на доводку в кислой среде более чем в 3 раза.

Таблица 2
Показатели щелочной флотации с применением собирателей-аналогов (Аспарал Ф, ИМ-50, ТЭАСАС), заявляемых ФОС в индивидуальном виде и ФОС с СС
Продуты Выход, % Та, % Расход собирателей, кг/т
Содержание Извлечение
Концентрат щелочной флотации 3,4 0,28 70,9 ААС-0,2
Хвосты щелочной флотации 96,6 0,0040 29,1 (аналог)
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 2,0 0,2 30,5 Аспарал Ф-0,2
Хвосты щелочной флотации 98,0 0,0094 69,5 (аналог)
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 2,1 0,250 40,3 ТЭАСАС-0,2
Хвосты щелочной флотации 97,9 0,0081 59,7 (аналог)
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 5,3 0,19 75,1 МТ-0,2
Хвосты щелочной флотации 94,7 0,0035 24,9
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 4,9 0,20 74,3 Ф10Т-0,2
Хвосты щелочной флотации 95,1 0,0036 25,7
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 4,3 0,23 73,5 Оксифос Б-0,20
Хвосты щелочной флотации 95,7 0,0037 26,5
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 3,9 0,27 78,9 ОксифосБ-0,20 Аспарал Ф-0,05
Хвосты щелочной флотации 96,1 0,0029 21,1 (заявляемый способ)
Исх. руда 100,0 100,0
Концентрат щелочной флотации 3,6 0,29 79,5 Ф10Т-0,20 ТЭАСАС-0,05
Хвосты щелочной флотации 96,4 0,0028 20,5 (заявляемый способ)
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 3,8 0,28 79,1 ФН6Б-0,20 ААС-0,05
Хвосты щелочной флотации 96,2 0,0029 20,9 (заявляемый способ)
Исх. руда 100,0 0,0133 100,0
Концентрат щелочной флотации 3,6 0,30 80,3 МТ-0,20 Аспарал Ф-0,05
Хвосты щелочной флотации 96,4 0,0027 19,7 (заявляемый способ)
Исх. руда 100,0 0,0133 100,0

На стадии флотационной доводки концентрата проверено влияние основных параметров процесса на ее технологические показатели: расходов и способов подачи реагентов. Результаты испытаний позволяют сделать следующие выводы:

- как и в щелочном цикле, наблюдается синергетический эффект при совместном применении ФОС и СС: небольшая добавка СС, в достаточно узком диапазоне концентраций повышает показатели флотации при снижении расхода основного собирателя (ФОС) при остаточной концентрации кислоты в пульпе 10-15 г/л;

- СС в соответствии с его ролью во флотационном процессе подают после ФОС;

- оптимальный интервал значений pH составляет 0,7-2,0: выше pH 2,0 снижается селективность процесса, при pH ниже 0,7 требуется неоправданно высокий расход серной кислоты;

- в качестве регулятора пенообразования в заявляемом способе используют аполярное масло ИС 45, подача которого улучшает характер пены. В отсутствие ИС 45 наблюдается сильное пенообразование и ухудшение качества конечного концентрата. ИС-45 подают совместно с серной кислотой;

- оптимальные расходы реагентов в кг/т питания при плотности пульпы 12% твердого составляют: серной кислоты - 130-180; ИС-45 - 1-2; ФОС - 2-3; СС - 0,30; ТПФ - 20-25.

Таким образом, только совместное применение предложенных ФОС и СС в заявляемых условиях обеспечивает наиболее эффективные показатели флотации редких металлов и олова.

Показатели флотации тантала, ниобия и олова из руды по флотационной схеме представлены в табл.5.

Пример 2. Флотационная доводка гравитационного концентрата.

Из пробы руды Этыкинского месторождения, характеристика которой приведена в табл.1, получен навигационный концентрат, минеральный и гранулометрический состав которого представлен в таблицах 3 и 4 соответственно. Этот концентрат после доизмельчения до содержания класса - 0,21 мм ~95,0% поступает на флотационную доводку.

Таблица 3
Минеральный состав гравитационного концентрата, %
Минерал Содержание Минерал Содержание
Колумбит 1,1 Циркон 0,2
Пирохлор-микролит Зн. Биотит 0,2
Касситерит Зн. Мусковит Зн.
Топаз 65,7 Вмещающие породы 0,3
Кварц + полевые пшаты 18,5 Скрап 5,1
Амазонит 0,1 Шламы 7,0
Пирит 1,0 Итого 100,0
Амфибол 0,8

Таблица 4
Гранулометрический состав гравитационного концентрата с распределением металлов по классам крупности, %
Классы крупности, мм Выход Содержание Распределение
Та Nb Sn Та Nb Sn
+0,21 4,1 0,163 0,277 0,474 1,65 2,5 3,0
-0,21+0,15 2,4 0,109 0,177 0,294 0,65 0,9 1,1
-0,15+0,074 62,2 0,096 0,110 0,148 14,6 15,2 14,0
-0,0774 31,3 1,086 1,173 1,714 83,1 81,4 81,9
Исх. к-т 100,0 0,407 0,451 0,655 100,0 100,0 100,0

Флотационная доводка (pH 0,7-2,0):

- обработка гравитационного концентрата серной кислотой до pH 1,5 (5 кг/т) и регулятором флотации (аполярным маслом - 0,1 кг/т);

- последовательная обработка пульпы ФОС (0,1 кг/т) и СС (0,03 кг/т) (10 мин);

- обработка триполифосфатом (ТПФ - 0,3 кг/т кг/т) (10 мин);

- основная доводочная флотация (20 мин) с получением концентрата доводки.

Результаты флотации тантала, ниобия и олова из гравитационного концентрата руды Этыкинского месторождения по заявляемому способу и способу-прототипу приведены в табл.6.

Из данных табл.5 и 6 следует, что:

- по флотационной схеме:

- с применением собирателей заявляемого способа получен концентрат с содержанием Та 8,5% при извлечении 72,4% от руды (90,1% от операции), ниобия 13,6% при извлечении 66,8% от руды (87,2% от операции) и олова 16,7% при извлечении 58,9% от руды (80,2% от операции). Концентрат может быть направлен на гидрометаллургическую переработку;

- при использовании собирателя способа-прототипа получен концентрат с содержанием 6,8% Та при извлечении 55,6% от руды (80,2% от операции), ниобия 8,6% при извлечении 52,5% от руды (76,8% от операции) и олова 10,1% при извлечении 42,6% от руды (68,8% от операции). Низкое качество концентрата по содержанию Та (<7%) не позволяет использовать его для гидрометаллургического передела;

- по гравитационно-флотационной схеме:

- по заявляемому способу получен концентрат с содержанием тантала 9,1% при извлечении 57,2% от руды (90,6% от операции), ниобия 13,7% при извлечении 60,5% от руды (87,4% от операции) и олова 17,0% при извлечении 53,3% от руды (79,8% от операции), качество которого позволяет направить его на гидрометаллургическую переработку;

- по способу-прототипу получен концентрат с содержанием тантала 6,9% при извлечении 47,1% от руды (74,5% от операции), ниобия 10,0% при извлечении 44,4% от руды (63,8% от операции) и олова 11,0% при извлечении 39,1% от руды (58,6% от операции), качество которого не позволяет использовать его для гидрометаллургического передела.

Таким образом, применение заявляемых собирателей дает возможность повысить качество концентрата по содержанию Та в 1,2-1,25 раза, при повышении извлечения Та на 16,8% по руде (9,9% по операции) по флотационной схеме и на 9,3% по руде (14,7% по операции) по гравитационно-флотационной схеме.

На основании результатов испытаний заявляемого способа флотации руд редких металлов и олова можно сделать следующие выводы:

- заявляемый способ может применяться как в щелочной среде (pH 8,5-10,0) для флотации Ta-Nb-Sn руд, в том числе содержащих топаз, с последующей доводкой флотационного концентрата в кислой среде (pH 0,7-2,0), так для повышения качества гравитационных концентратов;

- использование заявляемых ФОС в сочетании с СС в щелочной среде (pH 8,5-10,0) позволяет сконцентрировать тантал в 23 раза и сократить количество материала, поступающего на доводку в кислой среде более чем в 3 раза;

- проведение стадии флотационной доводки гравитационных и флотационных концентратов в кислой среде в заявляемых условиях дает возможность значительно повысить содержание в концентратах целевых компонентов и их извлечение в пенный продукт по сравнению со способом-прототипом; после проведения кислой доводки содержание тантала в концентрате доводки выше исходного в 640-680 раз;

- качество полученных по заявляемому способу концентратов флотационной доводки по содержанию целевых минералов и примесей позволяет использовать их для гидрометаллургической переработки;

- в заявляемом способе используют доступные промышленные собиратели, ассортимент которых достаточно разнообразен.

Таким образом, предлагаемый способ флотации руд редких металлов и олова может быть рекомендован для промышленного применения на обогатительных фабриках для флотации Ta-Nb-Sn руд.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 54.
10.04.2019
№219.017.07c1

Способ приготовления гранулированного смешанного фтористого сорбента на основе фторида натрия

Изобретение относится к синтезу гранулированных химических поглотителей. Способ приготовления гранулированного смешанного сорбента на основе фторида натрия включает гидрофторирование при 300-350°С прокаленных гранул, сформованных из пасты, содержащей (мас. %): карбонат натрия - 92-80,...
Тип: Изобретение
Номер охранного документа: 0002408420
Дата охранного документа: 10.01.2011
19.04.2019
№219.017.3114

Способ получения порошков редких металлов

Изобретение относится к области порошковой металлургии редких металлов (цирконий, гафний, ниобий, тантал), используемых в производстве жаропрочных коррозионно- и радиационно стойких сплавов для атомной, авиационной, химической промышленности, высокодисперсных и электролитических порошков для...
Тип: Изобретение
Номер охранного документа: 0002416493
Дата охранного документа: 20.04.2011
29.04.2019
№219.017.40d3

Способ извлечения урана из рудного сырья

Изобретение относится к способу извлечения урана из рудного сырья. Способ включает дробление, мокрое измельчение исходного сырья с получением пульпы. Причем в качестве исходного сырья используют руду, содержащую браннерит. После мокрого измельчения проводят сгущение пульпы, сернокислотное...
Тип: Изобретение
Номер охранного документа: 0002393255
Дата охранного документа: 27.06.2010
29.04.2019
№219.017.40e6

Способ получения тетрафторида кремния

Изобретение может быть использовано в электронной промышленности при производстве солнечных батарей. Кремнефторид натрия предварительно сушат при температуре до 300°С и остаточном давлении до 2 мм рт.ст. На первой стадии терморазложения кремнефторид натрия нагревают до 620-650°С с постоянным...
Тип: Изобретение
Номер охранного документа: 0002399583
Дата охранного документа: 20.09.2010
29.04.2019
№219.017.42da

Способ извлечения урана из трудновскрываемых руд

Изобретение относится к извлечению ценных компонентов из первичных и смешанных руд и может быть использовано для способа извлечения урана и сопутствующих металлов из трудновскрываемых руд. Способ включает окислительный обжиг при температуре 500-700°С и сернокислотное выщелачивании урана. Обжигу...
Тип: Изобретение
Номер охранного документа: 0002368681
Дата охранного документа: 27.09.2009
29.05.2019
№219.017.664a

Способ переработки урановой руды

Изобретение относится к способу переработки урановой руды. Способ включает гранулирование урановой руды, ее сульфатизацию серной кислотой в присутствии азотной кислоты. При этом азотную кислоту подают в количестве, необходимом для окисления сульфидов, содержащихся в урановой руде. Затем...
Тип: Изобретение
Номер охранного документа: 0002385963
Дата охранного документа: 10.04.2010
29.05.2019
№219.017.664c

Пиридиниевый ионит для сорбции урана из растворов и пульп

Настоящее изобретение относится к сорбционной гидрометаллургии урана. Описан пиридиниевый ионит на основе сополимера стирола и дивинилбензола для сорбции урана из растворов и пульп, отличающийся тем, что в состав исходной полимерной матрицы ионита дополнительно вводят метакриловую кислоту в...
Тип: Изобретение
Номер охранного документа: 0002385885
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7c0d

Способ сорбционного извлечения урана из сернокислотных растворов и пульп

Изобретение относится к гидрометаллургии и может быть использовано в сорбционной технологии извлечения урана из растворов и пульп, полученных в результате сернокислотного выщелачивания. Способ включает сорбционное извлечение урана из сернокислотных растворов и пульп контактированием со...
Тип: Изобретение
Номер охранного документа: 0002364642
Дата охранного документа: 20.08.2009
09.06.2019
№219.017.7c1d

Способ покусковой сепарации минерального сырья

Изобретение относится к области обогащения полезных ископаемых и, в частности его можно использовать в методах покусковой сепарации как радиоактивных, так и не радиоактивных руд. Способ покусковой сепарации минерального сырья по содержанию компонента включает покусковую подачу рудных кусков в...
Тип: Изобретение
Номер охранного документа: 0002366512
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7cf6

Способ переработки упорных руд и концентратов

Изобретение относится к способу переработки упорных руд и концентратов, содержащих золото. Способ включает обработку их хлором в присутствии воды и комплексообразователя в виде хлорида натрия с переводом золота в раствор, отделение раствора от образовавшегося осадка, промывку осадка водой с...
Тип: Изобретение
Номер охранного документа: 0002412262
Дата охранного документа: 20.02.2011
Показаны записи 1-5 из 5.
10.10.2013
№216.012.71e9

Способ флотационного обогащения гематитсодержащих железных руд и продуктов

Изобретение относится к области обогащения полезных ископаемых и может быть использовано для флотационного извлечения из тонковкрапленного железорудного сырья оксидов железа (гематита, мартита, магнетита). Способ флотационного обогащения железных руд и продуктов включает тонкое обесшламливание...
Тип: Изобретение
Номер охранного документа: 0002494818
Дата охранного документа: 10.10.2013
10.05.2014
№216.012.c127

Способ обогащения эвдиалитовых руд

Изобретение относится к области обогащения твердых полезных ископаемых, а именно к способам обогащения редкометаллических руд. Способ обогащения эвдиалитовых руд включает применение электромагнитной сепарации в сильном поле с выделением в немагнитную фракцию нефелин-полевошпатового концентрата...
Тип: Изобретение
Номер охранного документа: 0002515196
Дата охранного документа: 10.05.2014
27.11.2015
№216.013.938f

Способ флотационного обогащения редкометаллической руды

Изобретение относится к области обогащения твердых полезных ископаемых и может быть использовано при флотационном обогащении комплексных редкометаллических руд и продуктов. Способ флотационного обогащения редкометаллических руд и продуктов включает обработку пульпы сочетанием...
Тип: Изобретение
Номер охранного документа: 0002569394
Дата охранного документа: 27.11.2015
26.08.2017
№217.015.edbe

Фильтр для очистки криогенной жидкости

Изобретение относится к области фильтрования, а именно к фильтрам, работающим в условиях низких температур. Фильтр для очистки криогенной жидкости содержит цилиндрический корпус, внутри которого установлен фильтрующий элемент, выполненный в виде объемного конуса, вершина которого направлена...
Тип: Изобретение
Номер охранного документа: 0002628787
Дата охранного документа: 22.08.2017
24.05.2019
№219.017.5fb0

Собиратель для флотации флюоритовых руд

Изобретение относится к обогащению полезных ископаемых, в частности к флотации флюоритовых руд, и предназначено для промышленного использования на обогатительных фабриках. Позволяет сократить число перечисток, осуществить процесс флотации в холодной пульпе, существенно упростить технологическую...
Тип: Изобретение
Номер охранного документа: 0002319550
Дата охранного документа: 20.03.2008
+ добавить свой РИД