×
11.07.2019
219.017.b2d4

Результат интеллектуальной деятельности: ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки таких параметров амплитудно-частотной характеристики, как частоты полюса, затухания полюса, а также коэффициента передачи в полосе пропускания, а также расширении динамического диапазона путем увеличения амплитуды неискаженного выходного синусоидального сигнала фильтра. Фильтр содержит первый и второй операционные усилители, настройка параметров которых определяется возможностью изменения сопротивлений резисторов, включенных в заявленную схему фильтра. 2 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Активные RC-фильтры верхних частот (ФВЧ) относятся к числу распространенных аналоговых устройств, определяющих качественные показатели многих радиотехнических устройств, в том числе цифровой обработки сигналов [1-21].

Ближайшим прототипом заявляемого устройства является АRC-фильтр по патенту RU 2149500 («Активный RC-фильтр верхних частот», опубл.: 20.05.2000). Он содержит (фиг. 1) вход 1 и выход 2 устройства, первый 3 операционный усилитель, выход которого подключен к выходу 2 устройства, первый 4 и второй 5 последовательно соединенные резисторы, включённые между выходом первого 3 операционного усилителя и общей шиной источников питания 6, причем общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 операционного усилителя, последовательно соединенные третий 7 резистор и первый 8 конденсатор, включенные между выходом первого 3 операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора 7 и первого 8 конденсатора подключен первый вывод второго 9 конденсатора, четвертый 10, пятый 11 и шестой 12 резисторы.

Существенный недостаток АRC-фильтра-прототипа фиг. 1, а также других известных фильтров рассматриваемого класса [1-21], состоит в том, что в процессе подстройки его одного параметра, например, затухания или частоты полюса, изменяется третий важный параметр амплитудно-частотной характеристики (АЧХ) – коэффициент передачи в полосе пропускания. Это значительно усложняет производство ARC-фильтров данного класса.

Основная задача предполагаемого изобретения состоит в создании схемы АRC-фильтра верхних частот, которая обеспечивает независимую подстройку всех трех основных параметров АЧХ – частоты полюса (ωs), затухания полюса (ds), а также коэффициента передачи в полосе пропускания (М).

Дополнительная задача - расширение динамического диапазона по выходу устройства (при заданном напряжении питания) – увеличение амплитуды неискаженного выходного синусоидального сигнала ФВЧ для положительных и отрицательных полуволн до уровня, при котором отсутствуют заметные нелинейные искажения.

Поставленные задачи достигаются тем, что в ARC-фильтре верхних частот фиг. 2, содержащем вход 1 и выход 2 устройства, первый 3 операционный усилитель, выход которого подключен к выходу 2 устройства, первый 4 и второй 5 последовательно соединенные резисторы, включённые между выходом первого 3 операционного усилителя и общей шиной источников питания 6, причем общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 операционного усилителя, последовательно соединенные третий 7 резистор и первый 8 конденсатор, включенные между выходом первого 3 операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора 7 и первого 8 конденсатора подключен первый вывод второго 9 конденсатора, четвертый 10, пятый 11 и шестой 12 резисторы, предусмотрены новые элементы и связи – четвертый 10 резистор включён между инвертирующим входом первого 3 операционного усилителя и инвертирующим входом дополнительного операционного усилителя 13, пятый 11 резистор включен между выходом и инвертирующим входом второго 13 дополнительного операционного усилителя, шестой 12 резистор включен между входом 1 устройства и инвертирующим входом дополнительного операционного усилителя 13, выход которого соединен со вторым выводом второго 9 конденсатора, причем неинвертирующий вход первого 3 операционного усилителя связан с общей шиной источников питания 6 через дополнительный резистор 14, а неинвертирующий вход дополнительного операционного усилителя 13 соединен с общей шиной источника питания 6.

На чертеже фиг. 1 показана схема фильтра-прототипа, а на чертеже фиг. 2 – схема заявляемого АRC-фильтра верхних частот в соответствии с п. 1 формулы изобретения.

На чертеже фиг. 3 представлена схема заявляемого устройства в соответствии с п. 2 формулы изобретения.

На чертеже фиг. 4 показан частный вариант построения цепи симметрирования статического режима мультидифференциальных операционных усилителей в соответствии с п. 3 формулы изобретения.

На чертеже фиг. 5 приведены графики изменения АЧХ и фазо-частотной (ФЧХ) характеристик предлагаемого ФВЧ фиг. 2 при настройке частоты полюса (ωs) четвертым 10 и пятым 11 резисторами (здесь и далее графики ФЧХ будут приводиться без учета дополнительного фазового сдвига -1800, вносимого первым 3 и вторым 13 дополнительным операционными усилителями).

На чертеже фиг. 6 представлены АЧХ и ФЧХ схемы фиг. 2 при настройке затухания полюса (ds) с помощью первого 4 и второго 5 последовательно соединенных резисторов.

На чертеже фиг. 7 показаны графики изменения АЧХ схемы фиг. 2 при настройке коэффициента передачи М с помощью шестого 12 резистора.

АRC-фильтр верхних частот с независимой подстройкой основных параметров фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 операционный усилитель, выход которого подключен к выходу 2 устройства, первый 4 и второй 5 последовательно соединенные резисторы, включённые между выходом первого 3 операционного усилителя и общей шиной источников питания 6, причем общий узел первого 4 и второго 5 последовательно соединенных резисторов связан с инвертирующим входом первого 3 операционного усилителя, последовательно соединенные третий 7 резистор и первый 8 конденсатор, включенные между выходом первого 3 операционного усилителя и его неинвертирующим входом, причем к общему узлу третьего резистора 7 и первого 8 конденсатора подключен первый вывод второго 9 конденсатора, четвертый 10, пятый 11 и шестой 12 резисторы. Четвертый 10 резистор включён между инвертирующим входом первого 3 операционного усилителя и инвертирующим входом дополнительного операционного усилителя 13, пятый 11 резистор включен между выходом и инвертирующим входом второго 13 дополнительного операционного усилителя, шестой 12 резистор включен между входом 1 устройства и инвертирующим входом дополнительного операционного усилителя 13, выход которого соединен со вторым выводом второго 9 конденсатора, причем неинвертирующий вход первого 3 операционного усилителя связан с общей шиной источников питания 6 через дополнительный резистор 14, а неинвертирующий вход дополнительного операционного усилителя 13 соединен с общей шиной источника питания 6.

На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, в качестве первого 3 и дополнительного 13 операционных усилителей используются соответствующие первый 15 и второй 16 мультидифференциальные операционные усилители с двумя входными портами, причем схема включения инвертирующего и неинвертирующего входов первого входного порта первого 15 мультидифференциального операционного усилителя соответствует схеме включения инвертирующего и неинвертирующего входов первого 3 операционного усилителя по п.1 формулы изобретения, схема включения инвертирующего и неинвертирующего входов первого порта второго 16 мультидифференциального операционного усилителя соответствует схеме включения инвертирующего и неинвертирующего входов дополнительного операционного усилителя 13 по п.1 формулы изобретения, инвертирующий и неинвертирующие входы второго порта первого 15 мультидифференциального операционного усилителя связаны со первым 17 и вторым 18 входами первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя, инвертирующий и неинвертирующие входы второго порта второго 16 мультидифференциального операционного усилителя связаны со первым 20 и вторым 21 входами второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя. В частном случае первая 19 цепь симметрирования статического режима первого 15 мультидифференциального операционного усилителя и вторая 22 цепь симметрирования статического режима второго 16 мультидифференциального операционного усилителя реализуются на основе первого 23 и второго 24 вспомогательных резисторов (фиг. 3).

На чертеже фиг. 4, в соответствии с п. 3 формулы изобретения, первая 19 цепь симметрирования статического режима первого 15 мультидифференциального операционного усилителя и вторая 22 цепь симметрирования статического режима второго 16 мультидифференциального операционного усилителя включают первый 23 и второй 24 вспомогательные резисторы, причем первый 23 вспомогательный резистор первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя включен между её первым 17 входом и общей шиной источников питания 6, второй 24 вспомогательный резистор первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя включен между её вторым 18 входом и общей шиной источников питания 6, первый 23 вспомогательный резистор второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя включен между её первым 20 входом и общей шиной источников питания 6, а второй 24 вспомогательный резистор второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя включен между её вторым 21 входом и общей шиной источников питания 6. В ряде случаев, для регулировки уровня постоянной составляющей напряжения на выходах первого 15 и второго 16 мультидифференциальных операционных усилителях перспективно применение микросхемы цифрового потенциометра в качестве элемента 25 и вспомогательного источника напряжения 26 (фиг. 4). При таком построении ФВЧ обеспечивается регулировка динамического диапазона изменения выходных напряжений первого 15 и второго 16 мультидифференциальных операционных усилителей, в пределах которого выходной синусоидальный сигнала имеет одинаковые амплитуды неискаженного выходного напряжения для положительной и отрицательной полярности. В схеме ФВЧ-прототипа фиг. 1 на выходах первого 3 и дополнительного 13 операционных усилителей всегда присутствует постоянная составляющая выходного напряжения, обусловленная «неидеальностью» операционных усилителей (входные токи, напряжение смещение нуля). Как следствие, динамический диапазон известного устройства по выходу, особенно при больших сопротивлениях применяемых резисторов, оказывается небольшим.

Рассмотрим работу АRC-фильтра верхних частот, представленного на чертеже фиг. 2.

Одной из проблем проектирования прецизионных ФВЧ является обеспечение их основных заданных параметров в условиях разброса и нестабильности частотозадающих резисторов и конденсаторов [17,18]. Реализовать активный RC-фильтр с прецизионными характеристиками возможно только с применением пассивных элементов, имеющих допуски на отклонения их номинальных значений не более 0,1%. Если производители электронных компонентов выпускают резисторы с такими допусками и менее, то конденсаторы с допусками менее 1% не найти [18].

На практике прецизионность ФВЧ обеспечивается подстройкой пассивных элементов с помощью цифровой коммутации пассивных элементов, цифровых потенциометров или специальных технологических процессов подгонки резисторов [17,18], например, лазерной подгонкой резисторов в процессе работы фильтра. Однако в известных схемах ФВЧ второго порядка [17,18] при настройке одного параметра, например, частоты полюса (ωs), изменяется другой параметр – затухание полюса (ds) или коэффициент передачи (М) в полосе пропускания. Это существенно усложняет производство ФВЧ как микросхемы, так как приводит к итерационному процессу подстройки параметров [17,18].

Для обеспечения независимой подстройки основных параметров ФВЧ предлагается схема фиг. 2. В этой схеме ФВЧ за счет введения новых обратных связей, а также при больших коэффициентах усиления операционных усилителей, возможна независимая подстройка трех основных параметров – частоты полюса ωs, затухания полюса ds и коэффициента передачи в полосе пропускания М.

Покажем это математически. Свойства схемы стандартного ФВЧ второго порядка, в том числе фиг. 2, определяются его передаточной функцией

где М – коэффициент передачи фильтра в полосе пропускания, ωs – частота полюса, ds – затухание полюса.

Ниже представлены уравнения для основных параметров заявляемой схемы ФВЧ фиг. 2:

- коэффициент передачи

- частота полюса

- затухание полюса

Независимая настройка параметров ФВЧ возможна тогда, когда при настройке последующего параметра схемы не потребуется изменять сопротивления резисторов, определяющие уже настроенный параметр.

Из анализа формул (2)-(4) следует, что в предлагаемом ФВЧ фиг. 2 такая настройка осуществима в следующей последовательности:

Первый этап: настраивается частота полюса ωs путем изменения сопротивлений четвертого 10 и пятого 11 резисторов. Далее номиналы этих резисторов фиксируются.

Второй этап: настраивается затухание полюса ds путем изменения сопротивлений первого 4 и второго 5 резисторов. На втором этапе сопротивления четвертого 10 и пятого 11 резисторов не изменяются.

Третий этап: настраивается коэффициент передачи М путем изменения сопротивления шестого 12 резистора. На этом этапе сопротивления первого 4, четвертого 10 и пятого 11 резисторов и не изменяются.

Эффективность и последовательность такого алгоритма настройки ФВЧ подтверждаются результатами компьютерного моделирования (фиг. 5-7).

Следует заметить, что другие известные ARC-фильтры верхних частот [17-21], выполненные на двух операционных усилителях, свойствами предлагаемой схемы фиг. 2 не обладают.

По виду ФЧХ фиг. 5 можно судить, что частота полюса ωs, на которой фазовый сдвиг равен 900, изменяется (за счет четвертого 10 и пятого 11 резисторов) в относительно широких пределах.

По виду ФЧХ фиг. 6 можно установить, что при изменении сопротивлений первого 4 и второго 5 резисторов изменяется наклон ФЧХ в области частоты полюса ωs и изменяется подъем АЧХ на этой частоте. При этом частота полюса остается неизменной (ωs=const). При настройке затухания полюса изменяются частоты, на которых фазовый сдвиг составляет 450 и 1350.

Рассмотрение фазо-частотной характеристики фиг. 7 показывает, что шестой 12 резистор не изменяет ее параметры, т.е. частота ωs и затухание ds полюса ФВЧ остаются неизменными. При этом изменяется только коэффициент передачи фильтра в полосе пропускания М (общий уровень АЧХ).

Следует заметить, что предложенная процедура настройки активного RC-фильтра верхних частот применима при использовании микросхем цифровых потенциометров, а также при его изготовлении по гибридно-пленочной технологии. В схеме фиг. 2 уменьшать и увеличивать величину настраиваемого параметра возможно за счет увеличения сопротивлений пар отдельных пятого 11 и четвертого 10 резисторов (R11/R10), первого 4 и второго 5 резисторов (R4/R5) и пятого 11 и шестого 12 резисторов (R11/R12). При этом подгонка резисторов (резка тела резистора) приводит только к увеличению их сопротивлений.

Один из важных параметров ФВЧ фиг. 2 – это динамический диапазон изменения выходного напряжения первого 3 и дополнительного 13 операционных усилителей (ОУ), который определяется, с одной стороны спектром обрабатываемого сигнала, а также уровнем постоянных составляющих выходного напряжения данных ОУ. При этом, за счет «неидеальности» ОУ (наличия входных токов, напряжения смещения нуля), а также при больших сопротивлениях первого 4, пятого 11 резисторов и др., напряжение покоя на выходах первого 3 и дополнительного 13 операционных усилителей могут существенно отличатся от нулевого значения. Это отрицательно сказывается на динамическом диапазоне ФВЧ. Для устранения данного недостатка, в соответствии с п. 2 и п. 3 формулы изобретения, в предлагаемом ФВЧ фиг. 3 предусмотрено применение первого 15 и второго 16 мультидифференциальных операционных усилителей, а также первой 19 цепи симметрирования статического режима первого 15 мультидифференциального операционного усилителя и второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя. Такое схемотехническое решение позволяет обеспечить управление уровнем постоянной составляющей на выходах первого 15 и второго 16 мультидифференциальных операционных усилителей за счет изменения сопротивлений первого 23 вспомогательного резистора второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя и второго 24 вспомогательного резистора второй 22 цепи симметрирования статического режима второго 16 мультидифференциального операционного усилителя (фиг. 3). Возможно также применение микросхемы цифрового потенциометра в качестве элемента 25 и вспомогательного источника напряжения 26 (фиг. 4). Причем такое управление статическим уровнем выходного напряжения первого 15 и второго 16 мультидифференциальных операционных усилителей, т.е. управление динамическим диапазоном по их выходам не зависит от выбора частотозадающих резисторов схемы, т.к. осуществляется по вторым портам первого 15 и второго 16 мультидифференциальных операционных усилителей. В результате, на основе предлагаемой схемы ФВЧ реализуются ограничители спектра, в которых динамический диапазон изменения выходных напряжений, который можно характеризовать максимально возможной амплитудой неискаженного выходного синусоидального сигнала, оказывается выше, чем в схеме ФВЧ-прототипа. В конечном итоге это уменьшает уровень нелинейных искажений, вносимых в ФВЧ, что особенно заметно при малых напряжениях питания операционных усилителей.

Таким образом, предлагаемый ФВЧ имеет существенные преимущества в сравнении с известными схемотехническими решениями.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент RU 2149500, 2000 г.

2. Патент SU 1755364, 1992 г.

3. Патент SU 298059, 1971 г.

4. Патент SU 1758833, 1992 г.

5. Патент RU 2388140, 2010 г.

6. Патент RU 2293436, 2007 г.

7. Патент RU 2089998, 1997 г.

8. Патент RU 2058663, 1995 г.

9. Патент SU 1777233, 1992 г.

10. Патент SU 2089041, 1997 г.

11. Патент SU 799107, 1981 г.

12. Патент SU 1788570, 1993 г.

13. Патент RU 2019023, 1994 г.

14. Патент US 9240774 B2, 2016 г.

15. Патент SU 1732431, 1992 г.

16. Л. Фолкенберри, “Применения операционных усилителей в линейных”, ИС. - М.: Мир, 1985, с.223

17. G. S. Moschytz, P. Horn, “Active filter design handbook : for use with programmable pocket calculators and minicomputers”, Chichester England, New York, J. Wiley, 1981, 316 p.

18. S.А. Bukashkin, V.P. Vlasov, B.F. Zmiy, “Reference on ARC-circuit design”, under the editorship of А.А. Lanne, Мoscow, Radio and signal communication, 1984, 368 p.

19. R.P. Sallen and E.L. Key. “A Practical Method of Designing RC Active Filters”, IRE Trans. Circuit Theory. Vol. CT-2, March 1955, pp. 78-85.

20. D. Jurisic and G. S. Moschytz, "Low-noise active-RC low-, high- and band-pass allpole filters using impedance tapering," 10th Mediterranean Electrotechnical Conference, Information Technology and Electrotechnology for the Mediterranean Countries (MeleCon 2000), (Cat. No.00CH37099), vol.2., 2000, pp. 591-594. DOI: 10.1109/MELCON.2000.880002.

21. M. Fortunato, “A new filter topology for analog high-pass filters”, TI Analog Applications Journal, 2008, pp. 18-24.


ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
ARC-ФИЛЬТР ВЕРХНИХ ЧАСТОТ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 186.
04.04.2018
№218.016.350e

Измерительный мост с повышенным быстродействием

Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов сенсоров (ускорения, давления, радиации и т.п.) в напряжение. Технический результат - повышение быстродействия. Измерительный мост с повышенным быстродействием...
Тип: Изобретение
Номер охранного документа: 0002645867
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.36b2

Асинхронный пиковый детектор

Изобретение относится к области измерительной техники. Технический результат заключается в повышении надежности асинхронного пикового детектора в режиме разряда запоминающих конденсаторов. Асинхронный пиковый детектор содержит аналоговый вход (1) и аналоговый выход (2), первый (3) прецизионный...
Тип: Изобретение
Номер охранного документа: 0002646371
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.47a7

Способ определения параметров взвешенных частиц

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости,...
Тип: Изобретение
Номер охранного документа: 0002650753
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4896

Дифференциальный усилитель токов

Изобретение относится к устройствам усиления широкополосных сигналов. Технический результат заключается в повышении коэффициента усиления по току ДУТ при сохранении у него опции rail-to-rail. Дифференциальный усилитель токов содержит первый, второй, третий и четвертый дополнительные...
Тип: Изобретение
Номер охранного документа: 0002651221
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4d3d

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и связи. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ на основе трех токовых зеркал с микроамперными статическими токами. Технический результат достигается за...
Тип: Изобретение
Номер охранного документа: 0002652504
Дата охранного документа: 26.04.2018
09.06.2018
№218.016.5ba5

Устройство определения параметров взвешенных частиц

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой»...
Тип: Изобретение
Номер охранного документа: 0002655728
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5d90

Способ гигротермической обработки зерна овса

Способ включает увлажнение зерна влажным насыщенным паром, получаемым внутри камеры путем нагрева воды, находящейся в нижней части камеры до температуры 60-80°С при остаточном давлении в ней 0,03-0,05 МПа. Увлажнение заканчивают при достижении остаточного давления 0,06-0,08 МПа. Способ...
Тип: Изобретение
Номер охранного документа: 0002656344
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f90

Arc-фильтр нижних частот с независимой настройкой основных параметров

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для согласования источника сигнала, например, с аналого-цифровыми преобразователями различного функционального назначения. Технический результат: создание схемы ARC-фильтра нижних частот, которая...
Тип: Изобретение
Номер охранного документа: 0002656728
Дата охранного документа: 06.06.2018
25.06.2018
№218.016.667b

Дифференциальный преобразователь "напряжение-ток" с широким диапазоном линейной работы

Изобретение относится к области электроники и радиотехники и может быть использовано в качестве широкодиапазонного устройства преобразования входного дифференциального напряжения в пропорциональный выходной ток. Технический результат: уменьшение погрешности преобразования входного напряжения...
Тип: Изобретение
Номер охранного документа: 0002658818
Дата охранного документа: 22.06.2018
03.07.2018
№218.016.6a14

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных быстродействующих интерфейсах, устройствах преобразования сигналов. Технический результат: повышение на 1-2 порядка максимальной скорости нарастания выходного напряжения при работе...
Тип: Изобретение
Номер охранного документа: 0002659476
Дата охранного документа: 02.07.2018
Показаны записи 51-60 из 216.
20.11.2015
№216.013.8f5c

Дифференциальный усилитель с расширенным частотным диапазоном

Изобретение относится к устройствам усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов). Технический результат заключается в расширении диапазона рабочих частот КУ...
Тип: Изобретение
Номер охранного документа: 0002568316
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f5d

Широкополосная цепь смещения статического уровня в транзисторных каскадах усиления и преобразования сигналов

Изобретение относится к области усилителей аналоговых ВЧ и СВЧ сигналов. Техническим результатом является расширение диапазона рабочих частот цепи смещения статического уровня. Широкополосная цепь смещения статического уровня в транзисторных каскадах усиления и преобразования сигналов содержит...
Тип: Изобретение
Номер охранного документа: 0002568317
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f5e

Мультидифференциальный операционный усилитель с малым напряжением смещения нуля

Изобретение относится к прецизионным устройствам усиления сигналов различных сенсоров. Технический результат заключается в уменьшении абсолютного значения U, а также его температурных и радиационных изменений, обусловленных дрейфом β транзисторов. Мультидифференциальный операционный усилитель с...
Тип: Изобретение
Номер охранного документа: 0002568318
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fa0

Прецизионный операционный усилитель на основе радиационно стойкого биполярно-полевого технологического процесса

Изобретение относится к области радиотехники и может быть использовано в качестве прецизионного устройства усиления сигналов различных сенсоров. Технический результат заключается в уменьшении напряжения смещения нуля для повышения прецизионности операционного усилителя. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002568384
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fa1

K-значный логический элемент "максимум"

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в цифровых вычислительных структурах, системах автоматического управления, передачи и обработки цифровой информации. Техническим результатом является повышение быстродействия устройств...
Тип: Изобретение
Номер охранного документа: 0002568385
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.912c

Каскодный усилитель с расширенным диапазоном рабочих частот

Изобретение относится к области усилителей аналоговых сигналов. Техническим результатом является повышение значения верхней граничной частоты без ухудшения коэффициента усиления по напряжению в диапазоне средних частот. Каскодный усилитель содержит первый и второй входные транзисторы, первый...
Тип: Изобретение
Номер охранного документа: 0002568780
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9b40

Каскодный усилитель с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи. Технический результат заключается в расширении диапазона рабочих частот каскодного усилителя без ухудшения коэффициента усиления по напряжению. Устройство содержит входной преобразователь «напряжение-ток», токовый выход которого соединен с...
Тип: Изобретение
Номер охранного документа: 0002571369
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b5e

Дифференциальный усилитель на основе радиационно-стойкого биполярно-полевого технологического процесса для работы при низких температурах

Изобретение относится к измерительной технике и может быть использовано в качестве устройства усиления сигналов различных датчиков, в условиях воздействия низких температур и радиации. Технический результат заключается в обеспечении радиационно-стойкого низкотемпературного дифференциального...
Тип: Изобретение
Номер охранного документа: 0002571399
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b5f

Каскодный усилитель с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов, реализуемых по...
Тип: Изобретение
Номер охранного документа: 0002571400
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b61

Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью

Изобретение относится к области радиотехники и связи и может использоваться в микросхемах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п. Техническим результатом является повышение добротности резонансной амплитудно-частотной характеристики...
Тип: Изобретение
Номер охранного документа: 0002571402
Дата охранного документа: 20.12.2015
+ добавить свой РИД