×
11.07.2019
219.017.b2a9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка проводят вакуумно-дуговой переплав. Деформацию слитка на промежуточный полуфабрикат проводят предпочтительно многостадийной ковкой со скоростью деформации 0,03-0,2 с, при температуре на 40÷60°C выше растворения интерметаллидных фаз. Предварительную горячую прокатку на листовой полуфабрикат проводят в однофазной области - при температурах на 10÷60°С выше растворения интерметаллидных фаз до толщины 3-4 мм. Последующую термическую обработку полученных горячекатаных листов проводят при этой же температуре в течение не менее 20 минут, окончательную холодную прокатку с последующей термической обработкой листа при температурах выше температуры растворения интерметаллидных фаз, но не менее 1040°С в течение 10-20 минут. Вакуумно-дуговой переплав предпочтительно проводят по следующему режиму: рабочее значение силы тока 2,0-2,4 кА, напряжение 20-22 В. Способ позволяет получить полуфабрикаты из высокопрочных никелевых сплавов системы Ni-Fe-Co-Nb-Ti с повышенным уровнем характеристик длительной прочности при температурах до 600-650°С. 4 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к области металлургии, в частности к производству полуфабрикатов, например холоднокатаного листа, из высокопрочных никелевых сплавов системы Ni-Fe-Co-Nb-Ti и может быть использовано для изготовления корпусов камер сгорания ГТД.

Основные требования, предъявляемые к таким материалам для применения в перспективных газотурбинных двигателях - это высокие прочность и жаропрочность, хорошая технологичность и свариваемость, низкий температурный коэффициент линейного расширения (ТКЛР).

Для эффективного использования высокопрочных никелевых сплавов в промышленности необходимо осваивать новые технологии изготовления из них полуфабрикатов, в том числе листов, обеспечивающие высокий выход годного и стабильный уровень характеристик материала.

Сплавы системы Ni-Fe-Co-Nb-Ti, содержащие 22-35% железа имеют, по сравнению с применяемыми в настоящее время никелевыми сплавами, более низкую стоимость и, что важно, более низкий температурный коэффициент линейного расширения. При содержании ниобия более 3,5 масс. % и алюминия менее 0,7 масс. % особенностью сплавов является упрочнение интерметаллидными фазами Ni3Me, образуемыми титаном и ниобием. Это позволяет получить высокие значения кратковременной и длительной прочности при температурах до 600-650°С, а также хорошую свариваемость. Однако такие сплавы в определенном интервале температур (от 700 до 1020°С) склонны к образованию нежелательных т.п.у. фаз (Лавеса, σ-фазы), а также полиморфному превращению упрочняющих фаз (например, фазы γ'' в δ) с выделением их в игольчатой форме, что снижает характеристики длительной прочности и пластичности.

В связи с этими особенностями, специально для сплавов системы Ni-Fe-Co-Nb-Ti, была разработана технология получения полуфабрикатов. За счет введения операции дополнительного вакуумно-дугового переплава и найденных оптимальных температурно-деформационных параметров обработки кованых заготовок и листового проката, получены высокая технологичность и комплекс механических свойств материала.

Известен способ получения изделия, включающий деформацию (в том числе ковку) слитка жаропрочного сплава на основе системы Ni-Fe-Cr-Nb при температурах ниже 1010°С, с образованием в промежуточной заготовке при выдержке при температуре от 700 до 1000°С или замедленном охлаждении, равномерно распределенных частиц фазы Лавеса, размером менее 1 микрона, концентрация которых составляет 0,05-0,1 объемных %. Выделения фазы Лавеса обеспечивают мелкозернистую структуру при дальнейшей термомеханической обработке (US 20180057920 А1, опуб. 31.08.2016 C22F 1/10).

Недостатками этого способа является то, что ковка литой заготовки сплава системы Ni-Fe-Co-Nb-Ti при температурах ниже 1010°С приводит к неравномерному неконтролируемому выделению и росту частиц фазы Лавеса, в том числе, размером более 3 мкм вследствие ликвации легирующих компонентов в слитке при вакуумно-индукционной выплавке. Скопления частиц фазы Лавеса способствует образованию трещин из-за низкой пластичности металла и снижению уровня длительной прочности из-за неравномерности структуры.

Известен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение слитка вакуумно-дуговым переплавом, гомогенизирующий отжиг слитка, подпрессовку и прессование заготовки, окончательную деформацию и термическую обработку. Прессование заготовки осуществляют в штампе, путем многократной деформации при температуре на 55-95°С ниже полного растворения упрочняющей γ'-фазы (Тпрγ'). Перед окончательной деформацией заготовку подвергают промежуточному отжигу (RU 2301845, опуб. 27.06.2007 C22F 1/10).

К недостаткам данного способа можно отнести неэффективность деформации литой заготовки сплавов системы Ni-Fe-Co-Nb-Ti в двухфазной области в виду узкого температурного интервала, в котором сохраняется приемлемая пластичность материала для горячего формообразования. Кроме того, из-за выделения частиц фаз Лавеса, пластичность материала при горячей деформации дополнительно снижается. Описанный в патенте способ применим к жаропрочным сплавам на никелевой основе, содержащих значительное количество (более 30% масс.) γ'-фазы, температурная область существования которой существенно шире, чем в сплавах системы Ni-Fe-Co-Nb-Ti. Кроме того, указанным способом не предусматривается получение листового проката.

Известен способ изготовления листового полуфабриката из сплава на основе Ni-Fe типа Inconel 718 для последующей сверхпластической формовки, включающий отливку слитка, его деформационную обработку прокаткой в однофазной области, окончательную прокатку в интервале температур 975-825°С со скоростью деформации 10-4-101 с-1, с суммарной степенью деформации не менее 50%, возможна также дополнительная прокатка со скоростью 10-1-10-4 с-1 при 850-650°С или при 625-500°С или вхолодную с последующим рекристаллизационным отжигом (RU 2269589, опуб. 10.02.2006 C22F 1/10).

Недостатками этого способа являются недостаточная технологичность и пластичность полученных листовых заготовок и, как следствие, невозможность его использования для изготовления изделий, что вызвано неравномерным выделением крупных частиц фазы Лавеса при окончательной прокатке в указанном температурном интервале. Также указанные режимы деформации приводят к низкой производительности производства листового проката из-за низкой скорости деформации и узкого температурного интервала деформации.

Наиболее близким к предлагаемому изобретению является способ получения листовых изделий из никелевых жаропрочных сплавов, включающий отливку слитка, его деформационную обработку, предварительную горячую прокатку со степенью деформации не менее 70% и скоростью деформации 1-5 с-1 при Тпрγ'+30÷100°С и окончательную прокатку вхолодную со степенью деформации за проход 5-20%, с суммарной степенью деформации 20-80%; далее проводится термическая обработка при Тпрγ'+30÷80°С и выдержке 15-60 минут с последующим быстрым охлаждением (RU 2460824, опуб. 10.09.2012 C22F 1/10).

Данный способ распространяется на жаропрочные никелевые сплавы, где основной упрочняющей является γ' фаза, формирование которой влияет на механические свойства, все температуры обработки обозначены через температуру ее растворения. Указанный способ не учитывает температурную область существования интерметаллидных фаз, более термостабильных, чем фазы γ' и γ'', температура растворения которых в системе Ni-Fe-Co-Nb-Ti может составлять 950-980°С. Таким образом, температурный интервал деформации по настоящему способу для сплавов системы Ni-Fe-Co-Nb-Ti составляет 980-1050°С, а температурный интервал отжига при термической обработке составляет 980-1030°С.

Недостатками этого способа является получение исходной заготовки выплавкой без применения последующего переплава, что не обеспечивает требуемое снижение в сплаве содержания газов (кислород, азот) и неметаллических включений, приводит к недостаточной технологичности и пластичности материала на этапах обработки давлением, а также к снижению уровня прочности и жаропрочности после окончательной термической обработки в случае применения описанного способа для сплавов системы Ni-Fe-Co-Nb-Ti.

Технический результат заявленного изобретения заключается в разработке способа получения полуфабрикатов из высокопрочных никелевых сплавов, который для свариваемых высокопрочных сплавов системы Ni-Fe-Co-Nb-Ti обеспечит формирование оптимального структурного состояния с высокой технологической пластичностью при всех операциях обработки давлением, а также высокий уровень эксплуатационных свойств при температурах до 600-650°С.

Заявленный технический результат достигается тем, что способ получения полуфабрикатов из высокопрочных никелевых сплавов системы Ni-Fe-Co-Nb-Ti включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка проводят вакуумно-дуговой переплав. Деформацию слитка на промежуточный полуфабрикат проводят при температуре на 40÷60°С выше растворения интерметаллидных фаз. Предварительную горячую прокатку на листовой полуфабрикат проводят в однофазной области - при температурах на 10÷60°С выше растворения интерметаллидных фаз до толщины 3-4 мм, последующую термическую обработку полученных горячекатаных листов проводят при той же температуре в течение не менее 20 минут, но не более 3 часов, окончательную холодную прокатку с последующей термической обработкой листа проводят при температурах +10-40°С выше области существования интерметаллидных фаз, но не менее 1040°С в течение 10-20 минут, но не более 3 часов.

Вакуумно-дуговой переплав предпочтительно проводят по следующему режиму: рабочее значение силы тока 2,0-2,4 кА, напряжение 20-22 В. В варианте выполнения деформацию слитка на промежуточный полуфабрикат проводят со степенью деформации не более 70% за вынос.

Нагрев слитка под деформацию может быть проведен по ступенчатому режиму загрузка в печь при температуре 800°С, выдержка 2 часа, далее подъем температуры до 1100°С, со скоростью 90°С/час и выдержка в течение 2 часов. Сплав системы Ni-Fe-Co дополнительно может содержать Ti, Nb или Nb+Ta. Предпочтительно содержащие железа в сплаве составляет 22-35%. Деформацию слитка на промежуточный полуфабрикат могут проводить многостадийной ковкой со скоростью деформации 0,03-0,2 с-1, при температуре на 40-60°С выше растворения интерметаллидных фаз. Нагрев заготовки под деформацию осуществляют предпочтительно со скоростью 60-90°С/час в интервале температур от 800°С до температуры деформации, с выдержкой при температуре деформации 2-4 часа.

Горячую прокатку предпочтительно проводят на лист до толщины 2-4 мм за несколько этапов, с суммарной степенью деформации 80-95%, в однофазной области - при температурах на 10÷60°С выше растворения интерметаллидных фаз. Промежуточный отжиг полученных горячекатаных листов проводят при указанной температуре в течение 15-30 минут, но не более 3 часов. Холодную прокатку проводят с суммарной степенью деформации 40-70%;

Термическую обработку листа предпочтительно проводят за четыре стадии: первая - отжиг при температурах выше температуры растворения интерметаллидных фаз, но не менее 1040°С в течение 5-30 минут с последующим быстрым охлаждением; вторая стадия - выдержка при 840-860°С в течение 1-4 часа; третья стадия: выдержка 6-12 часов при температуре 700-740°С с дальнейшим охлаждением в печи со скоростью 40-80°С/час до температуры 620-660°С и выдержкой при этой температуре 6-12 часов. Вторая, третья и четвертая стадия термической обработки (старение) проводится после получения из листов готовых изделий: сварных узлов, деталей или образцов.

Введение вакуумно-дугового переплава обеспечивает мелкозернистую, равномерную структуру заготовки, снижение ликвации легирующих элементов в структуре слитка, снижение содержания газов (кислород, азот) и неметаллических включений и, тем самым, повышает технологичность и пластичность сплава.

Деформация слитка на промежуточный полуфабрикат (сутунку) ковкой со скоростью деформации 0,03-0,2 с-1 при температуре на 40÷60°С выше растворения интерметаллидных фаз позволяет проводить деформацию с минимальным сопротивлением металла и получить заготовку для дальнейшей обработки без трещин. Нагрев слитка с 800°С под деформацию со скоростью 60-90°С/час и выдержка при температуре деформации 2-4 часа обеспечивают более равномерный прогрев заготовки по объему, дополнительное снижение ликвации компонентов сплава и предотвращает образование термических трещин.

Горячая прокатка на лист до толщины 2-4 мм за несколько этапов, с суммарной степенью деформации 80-95%, при температуре на 10÷60°С выше области существования интерметаллидных фаз, но не менее 1040°С, промежуточный отжиг в течение 15-30 минут (но не более 3 ч) при температуре деформации позволяет получить горячекатаный полуфабрикат с рекристаллизованной равномерной структурой металла, с размером зерна 50-70 мкм, без присутствия интерметаллидных фаз, что обеспечит высокую технологичность сплава при последующей холодной прокатке, а также повысить коэффициент использования материала (КИМ).

Холодная прокатка с суммарной степенью деформации 40-70% обеспечивает необходимый размер листа без поверхностных трещин и дефектов.

Отжиг при температурах выше области существования интерметаллидных фаз в течение 5-30 минут с последующим быстрым охлаждением формирует равномерную структуру и обеспечивает повышение пластичности листа для возможности холодной штамповки и других операций обработки давлением, а также сварки. Вторая, третья и четвертая стадия термической обработки (старение) обеспечивает комплекс эксплуатационных характеристик.

Пример осуществления

Пример 1

На вакуумно-индукционной установке были выплавлены (с заливкой в металлические изложницы диаметром 90 мм) опытные плавки системы Ni-Fe-Co-Nb-Ti содержащие 22-35% железа весом 35 кг из чистых шихтовых материалов. Слитки были подвергнуты вакуумно-дуговому переплаву (ВДП). ВДП проводили в кристаллизаторе диаметром 110 мм по режиму: рабочее значение силы тока - 2,0 кА, напряжение - 22 В. Время проведения плавки составило 31 мин.

Далее полученные слитки нагревали под деформацию по ступенчатому режиму: загрузка в печь при температуре 800°С, выдержка 2 часа, далее подъем температуры до 1100°С, со скоростью 90°С/час и выдержка в течение 2 часов. Осадку слитков проводили по высоте со степенью деформации не более 30%, далее подогревали при температуре 1100°С в течение 40 минут. Деформация по образующей на квадрат 95×95 мм с правкой торцов и снова подогрев при температуре 1100°С в течение 40 минут. Степень деформации за вынос составляла не более 70%. Операции повторялись до получения промежуточного полуфабриката толщиной 30+10 мм. В результате были получены промежуточные полуфабрикаты - сутунки. Сутунки механически обрабатывали по всем поверхностям до удаления окалины и дефектов. После механической обработки полуфабрикаты (сутунки) подвергали прокатке при температуре 1080±10°С. Прокатку поперек оси осуществляли в два прохода за вынос с обжатием за проход не более 6 мм, подогрев в печи был при температуре 1080±10°С в течение 40 минут. Далее катали вдоль оси до толщины 4-1 мм с промежуточным подогревом: прокатка за два прохода за вынос с обжатием за проход не более 5 мм, подогрев в печи при температуре 1080±10°С в течение 40 мин. Температура окончания прокатки была не ниже 950°С. Термическую обработку горячекатаных полуфабрикатов проводили при температуре 1080°С в течение 30 минут для полного растворения избыточных фаз. Холодная прокатка до толщины 1,5 мм проводилась со степенью деформации от 10 до 15%. После холодной прокатки листовой прокат проходил контролируемую термическую обработку по режимам, соответствующим способу по прототипу и по предлагаемому способу: при температурах 1000-1060°С в течение 10-20 минут на определение влияния способа изготовления на длительную прочность. Отжиг по примеру 1 осуществлялся при температурах 1040, 1060, 1080°С (+10-40°С выше области существования интерметаллидных фаз). Отжиг по способу прототипа при температурах 985, 1000,1020, 1030°С (+30-80°С выше Тп.р.γ'(γ'')).

Пример 2

Пример 2 осуществляли аналогично примеру 1 только вакуумно-дуговой переплав (ВДП) проводили в кристаллизаторе диаметром 110 мм. по режиму: рабочее значение силы тока - 2,4 кА, напряжение - 20 В, время проведения плавки составило 28 мин.

На рисунках 1 а и 1 б представлена микроструктура горячекатаного полуфабриката, продеформированного при температурах 1000°С (1а) и 1100°С (1б), после прокатки и термической обработки в течение 30 минут.

Для сравнения механических свойств полуфабрикатов полученных по режиму прототипа и режимов согласно заявленному способу были изготовлены образцы полуфабрикатов (сутунок и листов) и испытаны при комнатной температуре и при температуре 600°С. Результаты представлены в таблицах №1, 2.

Как видно из таблицы, введение вакуумно-дугового переплава обеспечивает снижение содержания газов (кислорода и азота) и повышение пластичности сплава системы Ni-Fe-Co-Nb-Ti.

Из таблицы №2 видно, что уровень длительной прочности на базе 100 часов при температуре 600°С холоднокатаных листов, полученных заявленным способом, сплавов системы Ni-Fe-Co-Nb-Ti на 5-10% выше, чем у прототипа.


СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 354.
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a94

Состав для покрытия по металлу

Изобретение относится к области полимерных композиций на эпоксидной основе. Предложен состав для защиты внутренней поверхности топливных баков-кессонов летательных аппаратов, изготовленных из алюминиевых сплавов, от коррозии при длительной эксплуатации в среде топлива и может также применяться...
Тип: Изобретение
Номер охранного документа: 0002260610
Дата охранного документа: 20.09.2005
09.05.2019
№219.017.4aa9

Способ получения элемента соплового аппарата турбины и соплового аппарата турбины

Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента соплового аппарата, состоящую из стартовой и лопаточной частей. Стартовую часть модели изготавливают в виде двух пластин в...
Тип: Изобретение
Номер охранного документа: 0002265496
Дата охранного документа: 10.12.2005
09.05.2019
№219.017.4aaa

Способ получения элемента рабочего колеса турбины и рабочего колеса турбины

Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента колеса турбины, состоящего из дисковой и лопаточной частей. Дисковую часть модели изготавливают в виде двух пластин, имеющих...
Тип: Изобретение
Номер охранного документа: 0002265497
Дата охранного документа: 10.12.2005
09.05.2019
№219.017.4b7a

Способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к термической обработке изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе. Предложен способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002256723
Дата охранного документа: 20.07.2005
09.05.2019
№219.017.4b7e

Жаростойкий сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаростойким сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как, например, рабочие и сопловые лопатки, проставки соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002256714
Дата охранного документа: 20.07.2005
Показаны записи 291-300 из 326.
20.05.2019
№219.017.5c9e

Полимерный композиционный материал с интегрированным вибропоглощающим слоем

Изобретение относится к слоистым полимерным композиционным материалам (ПКМ) с повышенными вибропоглощающими свойствами и может быть использовано для снижения вибрации и структурного шума в малонагруженных элементах конструкции изделий авиационной техники. Полимерный композиционный материал с...
Тип: Изобретение
Номер охранного документа: 0002687938
Дата охранного документа: 16.05.2019
31.05.2019
№219.017.7045

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до...
Тип: Изобретение
Номер охранного документа: 0002689947
Дата охранного документа: 29.05.2019
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
+ добавить свой РИД