×
11.07.2019
219.017.b262

Результат интеллектуальной деятельности: Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа

Вид РИД

Изобретение

Аннотация: Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН)](ОН) растворением Сu(ОН) в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра. Изобретение обеспечивает возможность варьировать толщину получаемого слоя ФВЭ за счет изменения концентрации медьсодержащего прекурсора, а также снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки. 1 табл., 2 ил.

Изобретение относится к технологии изготовления фотовольтаических элементов с жидкофазным нанесением полупроводниковых слоев р-типа на основе оксида меди и может быть использовано при создании тонкопленочных полупроводниковых дырочно-транспортных слоев (ДТС) в фотовольтаических преобразователях (ФВП).

Известны различные подходы к размещению транспортных слоев в устройствах. Наиболее полным образом для планарной архитектуры они суммированы в работе [US 20160005987 A1 опублик.01.07.2014. Planar Structure Solar Cell with Inorganic Hole ransporting Material / Alexey Koposov, Changqing Zhan, Wei Pan.]. В данном случае речь идето полупроводниковых слоях на основе стехиометрических и нестехиометрических оксидов, используемых в перовскитных фотовольтаических элементах. Для формирования планарной структуры солнечного элемента предложен к использованию в том числе и оксид меди. Основными подходами к построению данной архитектуры, описанными в патенте являются следующие методы: формирование дырочно-транспортного слоя поверх металлического электрода, с последующим нанесением поверх него перовскита; нанесение на прозрачный электрод последовательно электрон-транспортного, перовскитного и после чего дырочно-транспортного слоя, с дальнейшим формированием металлического электрода поверх последнего. Описанный в патенте метод нанесения позволяет достичь толщины от 1 до 150 нм.

Данный метод имеет следующие недостатки: использование планарной архитектуры приводит к снижению стабильности и деградации ФВП. Одним из путей, позволяющим избежать описанных выше ограничений, является реализация инвертированной архитектуры ФВП.

Известен метод получения дырочно-транспортных слоев на основе оксида меди (I) в рамках планарной архитектуры ФВП [WO 2016/080854 A2 опублик.26.05.2016. Hybrid organic-inorganic perovskite-based solar cell with copper oxide as a hole transport material / Nouar Amor, Alharbi Fahhad Hussain, Hossain Mohammad Istiaque.]. В данном случае слой из оксида меди формируется на поверхности перовскита, предварительно полученного на слое электронотранспортного слоя, нанесенного на прозрачный электрод на стекле. Проводящий контакт наносится на непосредственно на ДТС.

Данный метод имеет следующие недостатки: как уже было сказано выше, использование планарной архитектуры приводит к снижению стабильности и деградации ФВП, помимо этого, Сu2О является нестабильным веществом подверженным окислению до оксида меди (II). Одним из путей, позволяющим избежать описанных выше ограничений, является реализация инвертированной архитектуры ФВП и использование нестехиометрического оксида меди.

Известен метод получения дырочно-транспортных мезопористых слоев на основе оксида меди для перовскитных солнечных элементов [CN 104409636A опублик. 18.11.2014. Perovskite thin-film solar cell with three-dimensional ordered mesopore support layer/ Yang Liying]. В данном случае для формирования ДТС используются заранее полученные наночастицы оксида меди организующиеся в сплошным слой самосборкой.

Данный метод имеет следующие недостатки: получаемые слои не имеют достаточной сплошности, что приводит к появлению тока утечек.

Наиболее близким к предложенному методу является подход, снованный на использовании комплексных металло органических соединений, меди [US 6086957 опублик 11.07.2000. Method of producing solution-derived metal oxide thin films / Boyle Timothy J., Ingersoll David]. В данном случае раствор ацетат меди (II) растворяют в смеси пиридана с усксусной кислотой в течение суток до полной гомогенности раствора, после чего провдят осаждение при текмпературе 300°С с дальнейшим нагревом до 650°С для окончательного формирования пленки оскида.

Данный метод имеет следующие недостатки: высокие температуры, используемые в процессе синтеза, в значительной степени увеличивают стоимость производства тонкопленочных покрытий на основе оксида меди.

Для устранения недостатков описанных выше подходов было предложено использование комплексного медь содержащего соединения состава [Сu(NН3)4](ОН)2 получаемого in situ растворением гидроксида меди в насыщенном растворе аммиака в этиленгликоле. Его применение позволит избежать взаимодействия прекурсора с прозрачным электродом, снизить температуру разложения до 150°С, тем самым снизив энергозатраты на производство. Вместе с тем, высокая сплошность слоя, позволит исключить ток утечек.

Техническим результатом заявляемого изобретения является возможность варьировать толщину получаемого слоя за счет изменения концентрации медьсодержащего прекурсора, а так же снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки.

Технический результат достигается следующим образом: получение органометалического прекурсора состава [Cu(NH3)4](OH)2 растворением свежеосажденного Cu(OH)2 в насыщенном растворе аммиака в этиленгликоле с концентрациями от 15 до 100 мг/мл, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения предварительно полученного раствора методом вращения подложки (центрифугирования) на слой предварительно очищенного FTO (ультразвуковая обработка в ацетоне, толуоле, изопропиловом спирте, активация под действием озона в течение 20 минут) на стекле со скоростью от 2500 до 3500 об/мин 30-90 секунд с последующим отжигом при от 150 до 300°С 1 час, формирование перовскитного фотоактивного слоя на оксиде меди в перчаточном боксе в атмосфере аргона, формирование электрон-транспортного слоя, формирование электродного слоя

Данная солнечная ячейка может быть изготовлена с помощью стандартных технологических операций. В данном патенте представлена технология, базирующаяся на методе нанесения на вращающуюся подложку (центрифугирования), однако для оксида меди она может быть расширена для использования в струйной печати. Также достигнутое снижение температуры процесса разложения позволит в дальнейшем использовать данную технологию и для полимерных субстратов в рамках гибких ФВП.

Изобретение поясняется изображениями, где на фигуре 1 показана зонная диаграмма устройства фотовольтаического преобразователя с дырочно-транспортным слоем на основе нестехиометрического оксида меди. На фигуре 2 приведена общая схема устройства где: 1 - металлический электрод, 2 - электрон-транспортный слой, 3 - слой фуллерена С60, 4 - фотоактивный перовскитный слой, 5 - дырочно-транспортный слой, 6 - прозрачный электрод, 7 - стекло.

При жидкофазном нанесении подложки методом центрифугирования критическую роль играет скорость вращения подложки. Так при скоростях менее 2500 об/мин излишки прекурсора не успевают покинуть подложку в результате чего формируется слой с толщиной превосходящей оптимальную для транспорта заряда (>50 нм). Скорость вращения более 3500 об/мин низкая сплошность получаемого слоя отрицательно сказывается на выходных характеристиках устройств. Т.о. наиболее оптимальным для нанесения является режим со скоростью вращения подложки около 3000 об/мин.

Фотовольтаические преобразователи были реализованы в рамках нижеприведенного маршрута. На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 5 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 15 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 50 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

При изготовлении солнечных элементов по с представленной архитектурой на фигуре 3 с различной толщиной слоя оксида никеля были получены следующие значения параметров ФВП, приведенные в таблице 1.

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН)](ОН) растворением Сu(ОН) в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра.
Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа
Источник поступления информации: Роспатент

Показаны записи 71-80 из 322.
25.08.2017
№217.015.b442

Способ получения нанотрубок нитрида бора

Изобретение относится к технологии получения керамических наноматериалов, а именно дискретных нанотрубок нитрида бора, применяющихся в качестве упрочняющей фазы для полимерных и металлических матриц. Способ включает приготовление реакционной смеси из бороксидного соединения и катализатора,...
Тип: Изобретение
Номер охранного документа: 0002614012
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b447

Термостойкая ткань из полимерных волокон и изделие, выполненное из этой ткани

Группа изобретений относится к текстильной промышленности, в частности к производству защитной одежды специального назначения. Термостойкая ткань образована переплетением основных и уточных нитей комбинированным полотняным переплетением, по основе основным репсом и по утку уточным репсом. Ткань...
Тип: Изобретение
Номер охранного документа: 0002614002
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b451

Способ получения нанокерамики методом совмещения самораспространяющегося высокотемпературного синтеза и искрового плазменного спекания

Изобретение относится к области керамического материаловедения, в частности к технологии получения нанокерамики. Техническим результатом предлагаемого изобретения является снижение энергозатрат, исключение применения различных активаторов спекания, повышение физико-механических свойств...
Тип: Изобретение
Номер охранного документа: 0002614006
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b45b

Акустооптический преобразователь поляризации лазерного излучения (варианты)

Акустооптическое устройство преобразования поляризации лазерного излучения состоит из первой и второй акустооптических ячеек, в которых происходит коллинеарная или неколлинеарная дифракция. Первая ячейка осуществляет деление входного пучка на два пучка, один из двух выходных пучков которой...
Тип: Изобретение
Номер охранного документа: 0002613943
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b479

Пневматическая флотационная машина

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при переработке минерального сырья, содержащего цветные, черные, редкие, благородные металлы, а также неметаллические полезные ископаемые, и при очистке сточных вод от твердых частиц и нефтепродуктов....
Тип: Изобретение
Номер охранного документа: 0002614170
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b4be

Исполнительный орган проходческого щитового комплекса для сооружения многополосных автодорожных и железнодорожных тоннелей и бесколонных станций метрополитена

Изобретение относится к исполнительному органу проходческого щитового комплекса для сооружения многополосных автодорожных и железнодорожных тоннелей и бесколонных станций метрополитена. Технический результат заключается в обеспечении проходки тоннелей оптимальной овальной формы поперечного...
Тип: Изобретение
Номер охранного документа: 0002614176
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b6e3

Катализатор и способ осуществления реакции фишера-тропша с его использованием

Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (CHNCo), а в качестве...
Тип: Изобретение
Номер охранного документа: 0002614420
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b964

Устройство для измерения отношения напряжения мостовых датчиков

Предлагаемое изобретение относится к измерительной технике, в частности к мостовым схемам измерения. Устройство измерения отношения напряжения мостовых датчиков содержит рабочий (измерительный) мост 1, измерительная диагональ которого через последовательно соединенные усилитель 2, селектируемый...
Тип: Изобретение
Номер охранного документа: 0002615167
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.ba00

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, обеспечивающей снижение...
Тип: Изобретение
Номер охранного документа: 0002615565
Дата охранного документа: 05.04.2017
Показаны записи 41-42 из 42.
21.03.2020
№220.018.0e67

Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом

Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата...
Тип: Изобретение
Номер охранного документа: 0002717064
Дата охранного документа: 17.03.2020
01.07.2020
№220.018.2d27

Способ измерения переходного контактного сопротивления омического контакта

Изобретение относится к области технологии изготовления изделий микроэлектроники, в частности к контролю контактных сопротивлений омических контактов к полупроводниковым слоям на технологических этапах производства. Сущность: способ измерения переходного контактного сопротивления, заключающийся...
Тип: Изобретение
Номер охранного документа: 0002725105
Дата охранного документа: 29.06.2020
+ добавить свой РИД