×
11.07.2019
219.017.b244

Результат интеллектуальной деятельности: Способ определения содержания высокодисперсного диоксида кремния в шликере на основе кварцевого стекла

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам аналитического контроля и может быть использовано для определения количественного содержания высокодисперсного кремнезема в шликере на основе кварцевого стекла. Способ определения содержания высокодисперсного диоксида кремния в шликере на основе кварцевого стекла включает отбор 1-100 г фракции шликера, содержащей частицы диоксида кремния (SiO) размером от 0 до 400 нм, сушку отобранной пробы в тигле при температуре 70-200°С в течение 0,5-8 часов до постоянной массы и взвешивание полученного сухого остатка, при этом перед отбором пробы исходный шликер на основе кварцевого стекла центрифугируют с частотой вращения ротора 2000-15000 об/мин в течение 15-40 мин и отделяют верхнюю жидкую фазу, содержащую частицы SiO размером от 0 до 400 нм, от твердого осадка. Техническим результатом изобретения является контроль содержания высокодисперсных частиц диоксида кремния в шликере, регулирование свойств керамических изделий на основе диоксида кремния, снижение энергозатрат. 2 табл.

Изобретение относится к методам аналитического контроля и может найти применение при изготовлении антенных обтекателей летательных аппаратов для определения количественного содержания высокодисперсного кремнезема в шликере на основе кварцевого стекла.

Шликер на основе кварцевого стекла представляет собой дисперсию, в которой дисперсной фазой является диоксид кремния (SiO2), а дисперсионной средой - дистиллированная вода. Максимальный размер частиц в дисперсной фазе составляет 200 мкм.

При производстве головных антенных обтекателей из кварцевой керамики интерес представляют высокодисперсные частицы диоксида кремния размером от 0 до 400 нм, поскольку именно они оказывают существенное влияние на процесс спекания керамических заготовок и на свойства изделий после обжига.

Для оценки влияния данных частиц на свойства керамического материала необходимо знать их точную концентрацию в шликере на основе кварцевого стекла.

Известен способ определения концентрации диоксида кремния в золе и в растворе силиката натрия, включающий титровании золя кислотой в присутствии фтористого натрия (NaF).

Определенный объем золя или силиката натрия (Na2SiO3) помещают в пластмассовую чашку, добавляют немного воды, при необходимости титруют соляной кислотой (HCl) с нормальностью 0,1 N или серной кислотой (H2SO4) в присутствии индикатора метиленового красного до исчезновения желтой окраски индикатора. Затем добавляют приблизительно 4 г фтористого натрия (NaF). Выделяющуюся в процессе реакции щелочь титруют при перемешивании раствором 1 N HCl или H2SO4 до исчезновения желтого цвета индикатора. Титрование заканчивают, когда последняя капля кислоты придает раствору устойчивое бледно-розовое окрашивание [Шабанова Н.А., Саркисов П.Д. Основы золь-гель технологии нанодисперсного кремнезема. - М.: ИКЦ «Академкнига», 2004. - 208 с].

Недостатком данного способа является то, что его можно использовать для дисперсии, содержащей только высокодисперсные частицы диоксида кремния. В шликере на основе кварцевого стекла в системе находятся частицы различных размеров - от 0 до 200 мкм. Для того чтобы определить количественное содержание частиц размером от 0 до 400 нм, необходимо предварительно отделить их от более крупной фракции.

Наиболее близким техническим решением (прототипом) является способ определения содержания диоксида кремния в кварцевом песке по ГОСТ 22552.1-77 «Песок кварцевый, молотый песчаник, кварцит и жильный кварц для стекольной промышленности. Метод определения диоксида кремния».

Сущность метода заключается в удалении фтористого кремния и прокаливании остатка при 1000-1200°С с учетом потерь при прокаливании. Навеску песка помещают в тигель и прокаливают при 1000-1200°С в течение 1 ч, охлаждают и взвешивают. Прокаливание повторяют по 30 мин до достижения постоянной массы. Прокаленный остаток в тигле смачивают несколькими каплями воды, приливают 1,0-1,5 см3 серной и 7-10 см3 фтористоводородной кислот. Смесь перемешивают и выпаривают до возможно полного удаления фтористоводородной кислоты. Смесь охлаждают и приливают еще 7-10 см3 фтористоводородной кислоты, и продолжают нагревание до полного разложения навески. Раствор выпаривают досуха. После прекращения выделения белых паров серного ангидрида тигель с содержимым прокаливают при 1000-1200°С в течение 40 минут, охлаждают и взвешивают. Прокаливание повторяют по 20 минут до достижения постоянной массы.

Недостатком этого способа является его многоступенчатость, длительность и отсутствие возможности его использования без предварительного отделения высокодисперсных частиц SiO2 от более крупной фракции в шликере на основе кварцевого стекла. Также при анализе используются концентрированные кислоты, что повышает опасность работ. Высокие температуры прокаливания приводят к большим энергозатратам.

Задачей настоящего изобретения является создание нового способа определения количественного содержания высокодисперсного кремнезема в шликере на основе кварцевого стекла.

Техническим результатом изобретения является осуществление контроля содержания высокодисперсных частиц диоксида кремния в шликере, регулирование свойств керамических изделий на основе диоксида кремния, снижение энергозатрат.

Поставленная задача достигается тем, что предложен способ определения содержания высокодисперсного диоксида кремния в шликере на основе кварцевого стекла, включающий отбор 1-100 г фракции шликера, содержащей частицы диоксида кремния (SiO2) размером от 0 до 400 нм, сушку отобранной пробы в тигле при температуре 70-200°С в течение 0,5-8 часов до постоянной массы и взвешивание полученного сухого остатка, отличающийся тем, что перед отбором пробы исходный шликер на основе кварцевого стекла центрифугируют с частотой вращения ротора 2000-15000 об/мин в течение 15-40 мин и отделяют верхнюю жидкую фазу, содержащую частицы SiO2 размером от 0 до 400 нм, от твердого осадка.

Авторами установлено, что центрифугирование шликера на основе кварцевого стекла позволяет отделить частицы диоксида кремния (SiO2) размером от 0 до 400 нм от остальной части твердой фазы, в результате последующей сушки выделенной дисперсии вода испаряется, после чего в тигле остается только дисперсная фаза - частицы диоксида кремния размером от 0 до 400 нм.

Экспериментально установлено, что уменьшение частоты вращения ротора центрифуги менее 2000 об/мин и времени центрифугирования менее 15 минут не обеспечивает эффективного разделения твердой и жидкой фаз. В результате в верхней жидкой фазе остаются частицы диоксида кремния размером более 400 нм, которые будут вносить дополнительный вклад в результаты дальнейшего анализа.

Увеличение частоты вращения ротора более 15000 об/мин и времени центрифугирования более 40 минут приводит к тому, что в верхней фазе остаются частицы диоксида кремния размером от 0 до 50 нм, то есть группа частиц размером от 50 до 400 нм переходит в нижнюю фазу и дальнейшему анализу не подлежит.

Сокращение времени сушки дисперсии менее 0,5 часа и температуры сушки менее 70°С является не эффективным, поскольку в этом случае вода не успевает полностью испариться, что вносит ошибку в дальнейшие результаты анализа.

Увеличение времени сушки дисперсии более 8 часов и температуры сушки более 200°С не имеет смысла, поскольку при данных условиях дисперсионная среда полностью удаляется из тигля.

Изобретение поясняется следующими примерами.

Пример 1. Шликер на основе кварцевого стекла центрифугируют со скоростью 3000 об/мин в течение 30 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 1 г полученной дисперсии при температуре 110°С в течение 15 минут, после чего вычисляют массу остатка дисперсии в тигле.

Пример 2. Шликер на основе кварцевого стекла центрифугируют со скоростью 3000 об/мин в течение 30 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 1 г полученной дисперсии при температуре 110°С в течение 30 минут, после чего вычисляют массу остатка дисперсии в тигле.

Пример 3. Шликер на основе кварцевого стекла центрифугируют со скоростью 3000 об/мин в течение 30 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 1 г полученной дисперсии при температуре 110°С в течение 3-х часов, после чего вычисляют массу остатка дисперсии в тигле.

Пример 4. Шликер на основе кварцевого стекла центрифугируют со скоростью 3000 об/мин в течение 30 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 100 г полученной дисперсии при температуре 110°С в течение 3-х часов, после чего вычисляют массу остатка дисперсии в тигле.

Пример 5. Шликер на основе кварцевого стекла центрифугируют со скоростью 3000 об/мин в течение 30 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 100 г полученной дисперсии при температуре 110°С в течение 8-ми часов, после чего вычисляют массу остатка дисперсии в тигле.

Пример 6. Шликер на основе кварцевого стекла центрифугируют со скоростью 3000 об/мин в течение 30 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 100 г полученной дисперсии при температуре 110°С в течение 9-ти часов, после чего вычисляют массу остатка дисперсии в тигле.

Полученные в примерах 1-6 данные по массе остатка дисперсии в тигле после сушки сведены в таблицу 1.

Пример 7. Шликер на основе кварцевого стекла центрифугируют со скоростью 15000 об/мин в течение 15 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 50 г полученной дисперсии при температуре 70°С в течение 8-ми часов, после чего вычисляют массу остатка дисперсии в тигле.

Пример 8. Шликер на основе кварцевого стекла центрифугируют со скоростью 2000 об/мин в течение 40 минут, отделяют верхнюю жидкую фазу. Затем сушат в фарфоровом тигле 50 г полученной дисперсии при температуре 200°С в течение 3-х часов, после чего вычисляют массу остатка дисперсии в тигле.

Полученные в примерах 7 и 8 данные по максимальному размеру частиц в дисперсии после центрифугирования, по наличию дисперсионной среды в тигле после сушки сведены в таблицу 2.

Из полученных результатов видно, что при скорости центрифугирования шликера 2000-15000 об/мин и времени 15-40 мин максимальный размер частиц в выделенной дисперсии не превышает 400 нм. При значениях температуры от 70 до 200°С целесообразно проводить сушку 1-100 г дисперсии в течение 0,5-8 ч. За это время дисперсионная среда полностью испаряется и масса сухого остатка достигает постоянных значений.

Таким образом, предлагаемое изобретение отличается от прототипа тем, что предложенным способом можно определить количественное содержание высокодисперсных частиц диоксида кремния размером от 0 до 400 нм в шликере на основе кварцевого стекла, предварительно отделив частицы данного размера от остальной части твердой фазы.

В отличие от прототипа, предлагаемое изобретение не требует высоких температур и сокращает стоимость анализа более чем в 3,5 раза. Применение предложенного способа позволяет контролировать содержание высокодисперсных частиц SiO2 в шликере и регулировать свойства керамических изделий на его основе. Совокупность существенных признаков, которая характеризует заявляемое изобретение, в известных источниках информации не обнаружена. Это подтверждает новизну изобретения.

Способ определения содержания высокодисперсного диоксида кремния в шликере на основе кварцевого стекла, включающий отбор 1-100 г фракции шликера, содержащей частицы диоксида кремния (SiO) размером от 0 до 400 нм, сушку отобранной пробы в тигле при температуре 70-200°С в течение 0,5-8 часов до постоянной массы и взвешивание полученного сухого остатка, отличающийся тем, что перед отбором пробы исходный шликер на основе кварцевого стекла центрифугируют с частотой вращения ротора 2000-15000 об/мин в течение 15-40 мин и отделяют верхнюю жидкую фазу, содержащую частицы SiO размером от 0 до 400 нм, от твердого осадка.
Источник поступления информации: Роспатент

Показаны записи 101-110 из 136.
10.08.2019
№219.017.bdad

Способ определения предела прочности керамики при осевом растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении хрупких материалов. Сущность: осуществляют растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей...
Тип: Изобретение
Номер охранного документа: 0002696934
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bdf6

Способ теплового нагружения обтекателей ракет

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов (ЛА), в частности керамических обтекателей ракет. Заявленный способ теплового нагружения обтекателей ракет из неметаллических материалов включает зонный радиационный нагрев обтекателя и измерение температуры....
Тип: Изобретение
Номер охранного документа: 0002696939
Дата охранного документа: 07.08.2019
16.08.2019
№219.017.c045

Способ испытания керамических оболочек

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ испытания керамических оболочек включает монтаж оболочки на контрольном шпангоуте с нанесенным на...
Тип: Изобретение
Номер охранного документа: 0002697410
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c07f

Способ теплопрочностных испытаний керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Способ теплопрочностных испытаний керамических обтекателей включает...
Тип: Изобретение
Номер охранного документа: 0002697481
Дата охранного документа: 14.08.2019
17.08.2019
№219.017.c174

Антенный обтекатель (варианты)

Изобретение относится к области авиационной и ракетной техники, преимущественно к конструкциям антенных обтекателей с радиопрозрачными оболочками для ракет класса «воздух-воздух» и «воздух-земля». Задачей изобретения является создание антенного обтекателя с многоконтурной поверхностью с...
Тип: Изобретение
Номер охранного документа: 0002697516
Дата охранного документа: 15.08.2019
23.08.2019
№219.017.c27b

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и предназначено для использования в конструкциях антенных обтекателей для низкоскоростных ракет класса «воздух-поверхность» или «поверхность-поверхность». Антенный обтекатель изготавливается из стеклопластика на основе кварцевой...
Тип: Изобретение
Номер охранного документа: 0002697890
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c27f

Способ контроля качества узла соединения керамического обтекателя

Изобретение относится к наземным испытаниям элементов летательных аппаратов и может быть использовано в процессе контроля клеевых соединений оболочек вращения. Сущность: осуществляют силовое нагружение вдоль оси симметрии обтекателя через пуансон с упругой прокладкой, наружная поверхность,...
Тип: Изобретение
Номер охранного документа: 0002697858
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2f6

Способ адаптивной механической обработки керамических изделий на специальных станках с чпу

Изобретение относится к области механической обработки изделий из различных материалов и может быть использовано при обработке изделий из керамики. Осуществляют адаптивную механическую обработку керамических изделий на станках с ЧПУ, которая включает установку заготовки на станке, измерение...
Тип: Изобретение
Номер охранного документа: 0002698008
Дата охранного документа: 21.08.2019
03.09.2019
№219.017.c6ce

Широкополосный антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «воздух-поверхность». Техническим результатом является обеспечение заданных радиотехнических характеристик в сверхширокополосном...
Тип: Изобретение
Номер охранного документа: 0002698956
Дата охранного документа: 02.09.2019
05.09.2019
№219.017.c74c

Способ пеленгации и широкополосный пеленгатор для его осуществления

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Технический результат - повышение точности угловой пеленгации в широкой полосе частот. Указанный результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002699079
Дата охранного документа: 03.09.2019
Показаны записи 101-110 из 157.
11.07.2019
№219.017.b2af

Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации

Изобретение относится к области теплофизики и касается способа определения степени черноты поверхности натурных обтекателей при тепловых испытаниях. Способ включает радиационный нагрев обтекателя, полностью соответствующего натурному обтекателю, на тепловом стенде кварцевыми галогенными лампами...
Тип: Изобретение
Номер охранного документа: 0002694115
Дата охранного документа: 09.07.2019
12.07.2019
№219.017.b30e

Способ тепловых испытаний радиопрозрачных обтекателей

Изобретение относится к технике наземных испытаний головных частей (обтекателей) летательных аппаратов (ЛА), а именно к способам контроля радиотехнических характеристик (РТХ) радиопрозрачного обтекателя (РПО) в условиях, имитирующих аэродинамический нагрев. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002694237
Дата охранного документа: 10.07.2019
12.07.2019
№219.017.b318

Инфракрасный нагреватель

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на элементах летательных аппаратов в наземных условиях. Инфракрасный нагреватель, содержащий каркас, теплоизоляционный экран,...
Тип: Изобретение
Номер охранного документа: 0002694244
Дата охранного документа: 10.07.2019
10.08.2019
№219.017.bdad

Способ определения предела прочности керамики при осевом растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении хрупких материалов. Сущность: осуществляют растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей...
Тип: Изобретение
Номер охранного документа: 0002696934
Дата охранного документа: 07.08.2019
16.08.2019
№219.017.c045

Способ испытания керамических оболочек

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ испытания керамических оболочек включает монтаж оболочки на контрольном шпангоуте с нанесенным на...
Тип: Изобретение
Номер охранного документа: 0002697410
Дата охранного документа: 14.08.2019
17.08.2019
№219.017.c174

Антенный обтекатель (варианты)

Изобретение относится к области авиационной и ракетной техники, преимущественно к конструкциям антенных обтекателей с радиопрозрачными оболочками для ракет класса «воздух-воздух» и «воздух-земля». Задачей изобретения является создание антенного обтекателя с многоконтурной поверхностью с...
Тип: Изобретение
Номер охранного документа: 0002697516
Дата охранного документа: 15.08.2019
23.08.2019
№219.017.c27b

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и предназначено для использования в конструкциях антенных обтекателей для низкоскоростных ракет класса «воздух-поверхность» или «поверхность-поверхность». Антенный обтекатель изготавливается из стеклопластика на основе кварцевой...
Тип: Изобретение
Номер охранного документа: 0002697890
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c27f

Способ контроля качества узла соединения керамического обтекателя

Изобретение относится к наземным испытаниям элементов летательных аппаратов и может быть использовано в процессе контроля клеевых соединений оболочек вращения. Сущность: осуществляют силовое нагружение вдоль оси симметрии обтекателя через пуансон с упругой прокладкой, наружная поверхность,...
Тип: Изобретение
Номер охранного документа: 0002697858
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2f6

Способ адаптивной механической обработки керамических изделий на специальных станках с чпу

Изобретение относится к области механической обработки изделий из различных материалов и может быть использовано при обработке изделий из керамики. Осуществляют адаптивную механическую обработку керамических изделий на станках с ЧПУ, которая включает установку заготовки на станке, измерение...
Тип: Изобретение
Номер охранного документа: 0002698008
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c338

Способ механической обработки крупногабаритных сложнопрофильных керамических изделий

Изобретение относится к области абразивной обработки и может быть использовано при механической обработке крупногабаритных сложнопрофильных керамических изделий. Используют оправку с узлами фиксации, которую устанавливают на токарном станке. На узлы фиксации оправки наносят поверхностный слой...
Тип: Изобретение
Номер охранного документа: 0002698009
Дата охранного документа: 21.08.2019
+ добавить свой РИД