×
10.07.2019
219.017.b060

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ РАДИАЛЬНОГО ЗАЗОРА В ШАРИКОПОДШИПНИКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей. Изобретение направлено на повышение производительности, информативности и качества диагностики величины радиального зазора в условиях вращения и действии осевой нагрузки, что обеспечивается за счет того, что закрепляют на валу внутреннее кольцо испытуемого подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника. При этом измеряют частоты прокатывания шариков по наружной и внутренней дорожкам качения или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению f=kf±f, где f - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, k - целое число (1, 2, 3…), f - частота прокатывания шариков по внутренней дорожке, f - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=f-f, где f - частота прокатывания шариков по внутренней дорожке, f - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей.

Известен способ контроля состояния подшипников качения, при котором измеряют радиальный зазор в подшипнике с помощью измерительных инструментов (Бейзельман Р.Я., Цыпкин В.В., Перель Л.А. «Подшипники качения». Справочник. - Машиностроение. 1967 г. стр.608).

Недостатком этого способа является его сложность и невозможность контроля радиального зазора в процессе вращения подшипника.

Известен также способ определения радиального зазора в подшипниках (а.с. 1673907, кл. G01М 13/04 от 30.08.91 г.), согласно которому закрепляют на валу внутреннее кольцо, прикладывают к подшипнику переменную по направлению радиальную нагрузку, перед приложением радиальной нагрузки закрепляют жестко относительно внутреннего наружное кольцо, а переменную по направлению радиальную нагрузку изменяют по величине и по времени, затем регистрируют вибрационные шумы подшипника.

Однако этот способ не обладает высокой производительностью и качеством диагностики шарикоподшипников при одновременном действии радиальной и осевой нагрузок.

Известна также схема измерений вибрации шариковых подшипников в условиях контролируемого нагружения осевой силой (Бальмонт В.Б., Варламов Е.Б., Горелик Н.Г. «О структурной вибрации шарикоподшипников». - Машиноведение, 1987 г., №1, стр.91-97).

Внутреннее кольцо испытуемого шарикоподшипника устанавливается с небольшим зазором на оправку, расположенную в свободном от вибрации шпинделе. По наружному кольцу подшипник нагружается осевой силой с помощью узла нагружения, минимально искажающего динамические характеристики свободного подшипника. Нагрузка равномерно распределяется по всем шарикам. Радиальная составляющая вибрации наружного кольца регистрируется с помощью малогабаритного датчика, поджимаемого к кольцу пневматически.

С помощью данной схемы может быть реализован известный способ диагностики зазоров и угла контакта при наличии осевой нагрузки на шарикоподшипник («Приборные шариковые подшипники», Справочник. - М.: Машиностроение, 1981 г., стр.239-240), взятого за прототип. По этому способу в спектре вибрации подшипника измеряют комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты вращения вала и гармоник частоты вращения сепаратора и по полученной величине расчитывают значение радиального зазора.

Недостаток этого способа проявляется в том, что требуются повышенной чувствительностью средства измерения вибрации с повышенной точностью их замера, так как частота вращения сепаратора и ее гармоники слабо изменяются при небольших отклонениях величины зазора от номинальных значений. В справочниках отсутствуют конструктивные параметры подшипника и данные о деформации контактирующих тел качения под действующей нагрузкой.

Технической задачей заявляемого решения является повышение производительности, информативности и качества диагностики величины радиального зазора в шариковом подшипнике в условиях вращения и действии осевой нагрузки.

Технический результат в заявляемом способе диагностики радиального зазора в шарикоподшипниках достигается тем, что закрепляют на валу внутреннее кольцо подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника. При этом измеряют частоты прокатывания шариков по наружной и внутренней дорожкам или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению fквн=kвн·fвн±fв, где fквн - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, kвн - целое число (1, 2, 3…), fвн - частота прокатывания шариков по внутренней дорожке, fв - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=fвн-fн, где fвн - частота прокатывания шариков по внутренней дорожке, fн - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора.

На фиг.1 представлена схема измерения вибрации, принятая в подшипниковой промышленности.

На фиг.2 представлена спектрограмма вибрации подшипника.

На фиг.3 представлена тарировочная зависимость величины сближения частот от радиального зазора для конкретного типа подшипника.

Подшипник подготавливают для измерений путем очистки, смазывания и прокрутки в целях достижения равномерного распределения смазочного материала в подшипнике. Подшипник монтируют на шпинделе для вращения внутреннего кольца. Конструкцией шпинделя с оправкой, применяемой для крепления и приведения во вращение внутреннего кольца подшипника, должно быть предусмотрено, чтобы, кроме передачи вращательного движения, шпиндель представлял бы жесткую базовую систему для оси внутреннего кольца. Передача вибрации между узлом шпинделя с оправкой и внутренним кольцом подшипника в применяемом диапазоне частот должна быть незначительной по сравнению с вибрацией подшипника. Цилиндрическая поверхность оправки, на которой монтируют внутреннее кольцо подшипника, должна обеспечить скользящую посадку в отверстии подшипника.

На наружной поверхности наружного кольца подшипника устанавливают датчик вибрации. Датчик должен быть расположен так, что его положение вдоль оси подшипника должно быть в плоскости, соответствующей середине контактов нагруженной дорожки качения наружного кольца с шариками. Направление оси чувствительности датчика должно быть перпендикулярно оси подшипника.

Осуществляют вращение подшипника с постоянной скоростью.

В процессе вращения к наружному кольцу подшипника прикладывают постоянную осевую нагрузку сначала с одной стороны наружного кольца, и затем повторно с другой стороны наружного кольца.

Радиально-упорные шариковые однорядные подшипники испытывают только в направлении, воспринимающем осевую нагрузку.

Конструкцией системы нагружения, применяемой для приложения нагрузок к наружному кольцу подшипника, должна быть обеспечена возможность свободного вибрирования кольца в радиальных, осевых, угловых и изгибных формах колебаний, в зависимости от типа подшипника.

Искажение формы колец подшипника, вызываемое контактом с элементами механического узла, должно быть незначительным по сравнению с геометрической точностью испытуемого подшипника.

Выполняют узкополосный спектральный анализ сигнала датчика вибрации в диапазоне частот, охватывающем частоты прокатывания шариков по дорожкам качения и/или их нескольких гармоник.

С учетом ожидаемого изменения радиального зазора определяют ориентировочные интервалы частот прокатывания шариков по дорожкам каченич и/или их нескольких гармоник.

Измеряемыми параметрами вибрации являются частота и среднеквадратическое значение виброскорости или среднеквадратическое значение виброускорения дискретных составляющих спектра, преобладающих по амплитуде в ожидаемых интервалах частот прокатывания шариков по дорожкам качения и/или их нескольких гармоник.

О состоянии подшипника судят по величине сближения измеренных частот прокатывания шариков по дорожкам качения и/или их гармоник, а также комбинационных частот, по величине сближения частот судят о состоянии подшипника и величине радиального зазора, а в качестве допустимого значения сближения частот используют настроечные значения, определенные по тарировочной зависимости. Комбинационные частоты используют в том случае, когда составляющие на этих частотах в спектре вибрации выделяются более четко, чем на основной частоте и ее гармониках.

Схема измерений вибрации подшипников, представленная на фиг.1, содержит оправку, расположенную в свободном от вибрации шпинделе 5, на которой установлено на скользящей посадке внутреннее кольцо 4 испытуемого шарикоподшипника. По наружному кольцу 3 подшипник нагружается осевой силой Q с помощью узла нагружения 2, минимально искажающего динамические характеристики свободного подшипника. Нагрузка Q равномерно распределяется по всем шарикам. Радиальная составляющая вибрации наружного кольца регистрируется с помощью малогабаритного датчика 1, поджимаемого к кольцу пневматически. Сигнал датчика 1 подается на блок согласования 6, выход которого соединен с аналого-цифровым устройством 7 обработки и спектрального анализа сигнала и измерения его параметров. В устройстве 7 проводят спектральный анализ сигнала, выделяют и идентифицируют в спектре информативные частоты, измеряют их значения и определяют величину сближения информативных частот.

Способ базируется на известных зависимостях частоты прокатывания шариков по наружной дорожке качения fн и частоты прокатывания шариков по внутренней дорожке качения fвн от числа шариков z, диаметра тела качения d, среднего диаметра подшипника D, угла контакта α и частоты вращения вала fв («Неразрушающий контроль», Справочник, т.7, Книга 2, Вибродиагностика. - Машиностроение, 2005 г., стр.574).

Частота прокатывания шариков по наружному кольцу в случае вращения внутреннего кольца и неподвижном наружном кольце

,

где fн - частота прокатывания шариков по наружной дорожке качения,

fв - частота вращения вала,

D - средний диаметр подшипника,

d - диаметр тела качения,

α - угол контакта.

Частота прокатывания шариков по внутреннему кольцу

,

где fвн - частота прокатывания шариков по внутренней дорожке качения, z - число шариков.

Разность частот Δf=fвн-fн характеризует их сближение и при постоянных условиях испытаний зависит только от угла контакта , где z - число шариков.

В случае наличия радиального зазора угол контакта в результате действия осевой нагрузки изменится. Так угол контакта α в радиальном однорядном шарикоподшипнике в случае предварительного натяга под действием небольшой осевой нагрузки при свободном перемещении в пределах осевой игры зависит от радиального зазора g, радиусов дорожек качения соответственно внутреннего rв и наружного rн колец в направлении, перпендикулярном качению, и диаметра тела качения d (смотри Перель Л.Я., Филатов А.А. «Подшипники качения». Справочник. - Машиностроение, 1992 г., стр.455):

,

где В=(rв+rн-d), а rв - радиус внутренней дорожки качения и rн - радиус наружной дорожки качения.

Поэтому, измеряя сближение частот Δf, можно оценить радиальный зазор.

Способ осуществляется путем контроля частот прокатывания шариков по наружной fн и внутренней fвн дорожкам или их гармоник f и fквн или комбинационных частот, связанных с частотой прокатывания шариков по внутренней дорожке:

f=kнfн,

fквн=kвнfвн±sfв, где kн, kвн и s - целые числа, а также может быть s=0.

Пример спектрограммы вибрации подшипника представлен на фиг.2. Параметры подшипника: d=8 мм, D=35 мм, z=9. Частота вращения вала fв=30 Гц. На спектрограмме выделяются составляющие с частотой прокатывания шариков по наружной дорожке fн=110 Гц и частотой f=195 Гц. Эта частота f есть комбинационная частота f=fвн+fв. Отсюда в данном примере сближение частот прокатывания шариков по внутренней и наружной дорожкам Δf=fвн-fн=55 Гц.

Тарировочная зависимость величины сближения частот от радиального зазора для данного типа подшипника представлена на фиг.3. По ней видно, что в рассмотренном примере величина Δf=fвн-fн=55 Гц соответствует радиальному зазору 0,043 мм.

Способ диагностики радиального зазора в шарикоподшипниках, заключающийся в том, что закрепляют на валу внутреннее кольцо испытуемого подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника, отличающийся тем, что измеряют частоты прокатывания шариков по наружной и внутренней дорожкам качения или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению f=kf±f, где f - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, k - целое число (1, 2, 3…), f - частота прокатывания шариков по внутренней дорожке, f - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=f-f, где f - частота прокатывания шариков по внутренней дорожке, f - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 204.
10.08.2014
№216.012.e771

Энергетическая установка

Изобретение относится к энергетике. Установка содержит источник водорода высокого давления, две герметичные капсулы, газодинамически связанные между собой, с входным и выходными патрубками, два турбодетандера, два потребителя мощности, основной потребитель водорода и краны, потребитель...
Тип: Изобретение
Номер охранного документа: 0002525042
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.ef08

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит цилиндрический корпус с конусообразным диффузором на входе, установленное на стенке камеры устройство зажигания топливовоздушной смеси и пристыкованную соосно к диффузору на входе горелку. Горелка включает системы подачи жидкого и газообразного...
Тип: Изобретение
Номер охранного документа: 0002527011
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f6de

Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается...
Тип: Изобретение
Номер охранного документа: 0002529035
Дата охранного документа: 27.09.2014
10.11.2014
№216.013.04bb

Способ и устройство для исследования температуропроводности материала

Группа изобретений относится к области измерительной техники и может быть использована для исследования температуропроводности материалов. Подготовленный для исследования образец подвергают воздействию тепловой и механической нагрузке, в форме осевого одноосного механического растяжения и...
Тип: Изобретение
Номер охранного документа: 0002532609
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0d11

Плазменный двигатель на наночастицах металлов или металлоидов

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для...
Тип: Изобретение
Номер охранного документа: 0002534762
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.222f

Электроприводной насос

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня. Электроприводной насос также...
Тип: Изобретение
Номер охранного документа: 0002540204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22e5

Способ и газотурбинная установка для утилизации попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, а более конкретно к способу и установке для утилизации попутных нефтяных газов. Способ утилизации попутных нефтяных газов, содержащих сероводород, заключается в сжигании газов в камере сгорания и преобразовании выделяющейся тепловой...
Тип: Изобретение
Номер охранного документа: 0002540386
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ad

Установка для получения газа из гидрата газа

Изобретение относится к устройствам для получения газообразного и сжиженного топлив из залежей гидратов. Технический результат заключается в получении свободного сжатого газа высокого давления и сжиженного газа, обеспечении работы установки за счет собственных энергетических ресурсов,...
Тип: Изобретение
Номер охранного документа: 0002541354
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
27.03.2015
№216.013.351e

Устройство для формирования и испытания образцов тонких покрытий

Изобретение относится к лабораторной испытательной технике, а именно к устройству для формирования и испытания образца тонких покрытий в нагрузочных устройствах, например, для испытания тонких керамических теплозащитных покрытий на механическую прочность растяжением. Устройство представляет...
Тип: Изобретение
Номер охранного документа: 0002545082
Дата охранного документа: 27.03.2015
Показаны записи 11-11 из 11.
10.07.2019
№219.017.aeb9

Отражательная призма для поворота плоскости поляризации

Изобретение относится к отражательным призмам для поворота плоскости поляризации и может быть использовано в проекционных дисплеях и других оптических приборах. Отражательная призма для поворота плоскости поляризации изготовлена из оптически прозрачного материала и имеет форму прямоугольного...
Тип: Изобретение
Номер охранного документа: 0002321031
Дата охранного документа: 27.03.2008
+ добавить свой РИД