×
10.07.2019
219.017.b029

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ ЛИТИЙ-ИОННОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей (ЛИАБ). Техническим результатом изобретения является повышение эффективности использования ЛИАБ и увеличение срока службы. Согласно изобретению способ эксплуатации ЛИАБ заключается в проведении зарядов, разрядов, хранении в заряженном состоянии, контроле и регулировании температуры ЛИАБ посредством встроенного нагревателя, управляемого в зависимости от текущей температуры ЛИАБ. Управление работой встроенного нагревателя проводят в зависимости от текущей температуры ЛИАБ непрерывно, с помощью широтно-импульсного модулятора с обратной связью, в заданном контрольном диапазоне температур. Кроме того, заданный контрольный диапазон температуры корректируют в процессе эксплуатации в большую или меньшую сторону в зависимости от текущей температуры, от тепловыделения ЛИАБ при проведении циклов разряда-заряда, от изменения номинального значения температуры из-за деградации характеристик системы терморегулирования. 3 з.п. ф-лы, 4 ил.

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).

Преимущества литий-ионной аккумуляторной системы в сравнении с никель-водородными системами делают ее привлекательной для применения на ИСЗ. Однако, реализовать энергетические и ресурсные характеристики литий-ионных аккумуляторных батарей можно только при организации эффективного контроля и управления по напряжению и температуре, проведении специальных работ по балансировке (выравниванию запасенной энергии) аккумуляторов в батарее, заряде аккумуляторной батареи оптимальными токами.

Для того чтобы заряжать литий-ионный аккумулятор, необходимо, чтобы его температура была выше температуры замерзания электролита. При эксплуатации литий-ионных аккумуляторных батарей в условиях низких температур снижается емкость, уменьшается рабочее напряжение. Кроме того, при низких температурах имеет место начальная просадка напряжения. Литий-ионные аккумуляторы лучше работают при высокой температуре, которая противодействует увеличению внутреннего сопротивления аккумулятора, являющемуся результатом старения. Но повышенные температуры, в свою очередь, способствует ускоренному старению аккумулятора, с дальнейшим увеличением внутреннего сопротивления. Повышение температуры эксплуатации (в пределах рабочего диапазона) также может увеличить скорость побочных процессов, затрагивающих границу раздела электрод - электролит, и повысить скорость уменьшения разрядной емкости с циклами. Количество циклов заряда-разряда не так сильно влияют на ресурс литий-ионной батареи, как возраст и температурный диапазон.

Наиболее оптимальным температурным диапазоном работы литий-ионной аккумуляторной батареи является температурный диапазон 15-25°C (см. Д.А.Хрусталев. Аккумуляторы. М.: Изумруд, 2003 г.).

Известен способ эксплуатации литий-ионных аккумуляторных батарей, в которых имеется функция управления температурой воздуха, окружающего аккумулятор (внешней температурой). В опубликованной заявке Японии JP 8185897 раскрывается зарядное устройство, в котором устанавливается нижняя температурная граница, которая равна или выше заданного значения, и устанавливается верхняя температурная граница, которая равна или ниже заданного значения.

Наиболее близким техническим решением является способ, реализованный устройством для заряда литиевых аккумуляторов для применения на ИСЗ, который принят в качестве прототипа. В заявке Японии JP 2001155783 раскрывается устройство для заряда литиевых аккумуляторов для применения на ИСЗ, которое препятствует замерзанию при низких температурах аккумуляторов с неводным электролитом и препятствует ухудшению характеристик аккумуляторов при высоких температурах, обеспечивая тем самым стабильные заряд-разрядные характеристики. Устройство имеет в составе нагревательные элементы (блок коммутаторов) и систему управления. Включение нагревательного элемента происходит при достижении нижнего уровня температурного диапазона, отключение происходит при достижении верхнего уровня температурного диапазона. Коммутация осуществляется посредством электромеханических реле (блок коммутаторов).

Известный способ позволяет удерживать температуру аккумуляторной батареи в рабочем диапазоне.

Однако данный способ имеет ряд недостатков.

1. В системе терморегулирования происходит температурное циклирование (температура циклически изменяется от нижнего до верхнего значения рабочего температурного диапазона). Большой диапазон температуры при штатной эксплуатации (15-25)°C уменьшает ресурс аккумуляторной батареи.

2. При проведении подогрева аккумуляторной батареи совместно с проведением заряд-разрядных циклов возможен выход температуры аккумуляторной батареи из заданного диапазона температур ввиду инерционности тепловых процессов.

3. В известном способе нагрев происходит на полную мощность нагревательных элементов. Нагрев на полную мощность и циклирование снижает ресурс нагревательных элементов и системы в целом.

Задачей заявляемого изобретения является повышение эффективности использования литий-ионной аккумуляторной батареи и увеличение срока службы аккумуляторной батареи и системы терморегулирования.

Эта задача решается тем, что при проведении зарядов, разрядов, хранении в заряженном состоянии, контроле и регулировании температуры аккумуляторов посредством встроенного нагревателя, управляемого в зависимости от текущей температуры аккумуляторной батареи, управление работой встроенного нагревателя проводят в зависимости от текущей температуры аккумуляторной батареи непрерывно, с помощью широтно-импульсного модулятора с обратной связью, в заданном контрольном диапазоне температур. Кроме того, заданный контрольный диапазон температуры корректируют в процессе эксплуатации в большую или меньшую сторону в зависимости от текущей температуры, от тепловыделения аккумуляторной батареи при проведении заряд-разрядных циклов, от изменения установившегося равновесного значения температуры из-за деградации характеристик системы терморегулирования.

Суть изобретения поясняется чертежами, где на Фиг.1 изображена зависимость температуры аккумуляторной батареи от времени в процессе работы системы терморегулирования при начальной температуре -10°C, также на графике указан оптимальный температурный диапазон (15-25)°C, на Фиг.2 изображена зависимость температуры аккумуляторной батареи от времени, в процессе работы системы терморегулирования, при начальной температуре 19°C и проведении цикла заряда аккумуляторной батареи (время начала заряда 3 часа, продолжительность 7 часов). Построение выполнено с учетом энергии, подводимой на подогрев аккумуляторной батареи и энергии, отводимой через радиатор охлаждения (характеристики упомянуты выше). Построение выполнено без учета инерционности тепловых процессов, на графике Фиг.3 представлена передаточная характеристика широтно-импульсного модулятора, отображающая зависимость коэффициента заполнения от управляющего напряжения.

Действительно, в заявляемом изобретении управление нагревательными элементами осуществляется непрерывно по текущей температуре аккумуляторной батареи. Это позволяет непрерывно регулировать мощность тепловыделения нагревательных элементов в зависимости от текущей температуры аккумуляторной батареи. Если в исходном состоянии температура аккумуляторной батареи ниже рабочего диапазона температур (Фиг.1), то температура будет расти линейно (мощность нагревательных элементов будет постоянной и максимальной) до момента достижения температурой нижней уставки температуры. Дальнейший рост температуры будет снижать мощность нагревательных элементов, обеспечивая тем самым плавный подход к установившемуся равновесному значению температуры. Если в исходном состоянии температура аккумуляторной батареи выше рабочего диапазона температур, то температура будет падать линейно (нагревательные элементы выключены) до момента достижения температурой верхней уставки температуры. Дальнейшее падение температуры будет повышать мощность нагревательных элементов, обеспечивая тем самым плавный подход к установившемуся равновесному значению температуры. Установившееся равновесное значение может иметь значение в пределах температурного диапазона.

Данная задача согласуется с законом управления широтно-импульсного модулятора. Когда начальная температура ниже температурного диапазона, до момента достижения температурой нижней уставки коэффициент заполнения широтно-импульсного модулятора равен единице и транзисторный ключ открыт, тем самым на нагревателе выделяется полная мощность. Дальнейший рост температуры будет уменьшать коэффициент заполнения широтно-импульсного модулятора и время открытого состояния транзисторного ключа за период будет уменьшаться. Когда мощность, выделяемая на нагревателе, сравняется с мощностью, которая снимается через радиатор охлаждения, наступит равновесие и установится постоянная скважность широтно-импульсного модулятора. При данной скважности установится равновесная температура. Когда начальная температура выше температурного диапазона до момента достижения температурой верхней уставки температуры, коэффициент заполнения широтно-импульсного модулятора равен нулю и транзисторный ключ закрыт, тем самым на нагревателе не выделяется мощность. Дальнейшее падение температуры будет увеличивать коэффициент заполнения широтно-импульсного модулятора и время открытого состояния транзисторного ключа за период будет увеличиваться. Когда мощность, выделяемая на нагревателе, сравняется с мощностью, которая снимается через радиатор охлаждения, наступит равновесие и установится постоянная скважность широтно-импульсного модулятора. При данной скважности установится равновесная температура. Цепь обратной связи широтно-импульсного модулятора должна обеспечивать закон изменения напряжения управления от температуры таким образом, чтобы напряжению U0 соответствовала температура, равная температуре нижней уставки. А также обеспечивался необходимый наклон характеристики в диапазоне ΔU (Фиг.3).

При проведении циклов разряда-заряда вследствие того, что выделяется энергия (саморазогрев аккумуляторов), установившееся равновесное значение температуры будет изменяться. В случае проведения цикла разряда при постоянном токе номинальное значение температуры после переходного процесса примет новое постоянное значение. При проведении цикла заряда установившееся равновесное значение температуры будет расти с ростом напряжения заряда (заряд при постоянном токе).

Для обеспечения большей надежности системы и для компенсации изменения установившегося равновесного значения температуры, вызванного изменением характеристик системы (изменение тепловыделения аккумуляторной батареи при заряде-разряде, изменение характеристик системы охлаждения аккумуляторной батареи и характеристик самой аккумуляторной батареи), предлагается введение возможности корректировки параметров обратной связи. Изменяемым параметром является температурный диапазон. Изменение температурного диапазона осуществляется по программе с помощью бортовой электронно-вычислительной машины (ЭВМ).

В заявляемом изобретении управление температурным диапазоном осуществляется тремя способами.

По первому способу изменение температурного диапазона осуществляется дискретно по текущей температуре. Данный способ позволяет уменьшить время переходного процесса (осуществляя нелинейный закон изменения мощности нагревательного элемента от температуры).

При исходной температуре ниже нижней уставки бортовая ЭВМ задает температурный диапазон выше оптимального (15-25°C). По мере роста температуры (нагреватель управляется широтно-импульсным модулятором) выше нижней уставки бортовая ЭВМ будет дискретно понижать температурный диапазон до оптимального. При исходной температуре выше верхней уставки бортовая ЭВМ задает температурный диапазон ниже оптимального. По мере падения температуры (нагреватель управляется широтно-импульсным модулятором) ниже верхней уставки бортовая ЭВМ будет дискретно повышать температурный диапазон до оптимального.

По второму способу изменение температурного диапазона осуществляется дискретно по параметрам работы аккумуляторной батареи. Данный способ позволяет улучшить стабилизацию температуры (введением обратной связи по основным возмущающим факторам изменения установившегося равновесного значения температуры).

При проведении заряд-разрядных циклов, когда на аккумуляторной батарее идет процесс саморазогрева (вследствие которого изменяется установившееся равновесное значение температуры), происходит изменение рабочего температурного диапазона. Это позволяет при изменившемся равновесном значении температуры относительно рабочего диапазона оставить установившееся равновесное значение температуры на том же уровне за счет изменения рабочего диапазона. При проведении заряда мощность, выделяющаяся за счет саморазогрева аккумуляторной батареи, линейно растет с ростом напряжения заряда. При разряде мощность, выделяющаяся за счет саморазогрева аккумуляторной батареи, зависит от тока разряда. Предлагается изменять температурный диапазон в зависимости от параметров: тока разряда аккумуляторной батареи и напряжения заряда (при постоянном токе заряда аккумуляторной батареи).

По третьему способу изменение температурного диапазона осуществляется дискретно по радиокомандам с Земли. Данный способ позволяет компенсировать изменение установившегося равновесного значения температуры за счет неконтролируемых факторов и деградации характеристик систем.

В процессе эксплуатации ИСЗ на Землю по радиокомандам передается информация о состоянии аккумуляторной батареи, в том числе и текущая температура. В случае если установившееся равновесное значение температуры меньше оптимальной температуры, передается радиокоманда с Земли в бортовую ЭВМ на повышение оптимального температурного диапазона. В случае если установившееся равновесное значение температуры больше оптимальной температуры, передается радиокоманда с Земли в бортовую ЭВМ на понижение оптимального температурного диапазона.

Заявляемое устройство позволяет производить стабилизацию температуры аккумуляторной батареи по наиболее сильным возмущающим факторам (саморазогрев аккумуляторной батареи) и по принципу обратной связи, когда в качестве управляющего сигнала нагревательных элементов используется сигнал, пропорциональный стабилизируемой температуре.

На чертеже, фиг.4, приведена функциональная схема автономной системы электропитания, включающая систему регулирования температуры аккумуляторной батареи.

Устройство содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 к входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов (напряжения, давления, температуры) 7, связанное входом с аккумуляторной батареей 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).

Параллельно нагрузке 2 подключено устройство нагрева аккумуляторной батареи 8, связанное входом с устройством контроля аккумуляторов 7 и нагрузкой 2 (бортовой ЭВМ). А выходом с аккумуляторной батареей 4 (тепловая связь).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 9.

Зарядный преобразователь 5 состоит из регулирующего ключа 10, управляемого схемой управления 11, вольтодобавочного узла, выполненного на трансформаторе Tp, транзисторах T1 и T2, и выпрямителя на диодах D1 и D2.

Разрядный преобразователь 6 состоит из регулирующего ключа 12, управляемого схемой управления 13.

Устройство нагрева аккумуляторной батареи 8 состоит из регулирующего ключа 14, управляемого схемой управления 15 и нагревательного элемента Rн.

Преобразователь напряжения 3 состоит из регулирующего ключа 16, управляемого схемой управления 17, входного фильтра C1 и выходного фильтра на диоде D, дросселе L и конденсаторе C.

Схемы управления преобразователями 11, 13, 17, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 11 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 9 и нагрузкой 2 (с командно-измерительной радиолинией).

Схема управления преобразователем 15 выполнена в виде широтно-импульсного модулятора, входом подключенного к устройству контроля аккумуляторов 7 и к нагрузке 2 (бортовой ЭВМ).

Устройство контроля аккумуляторов 7 контролирует текущие емкость, напряжение и температуру аккумуляторов и передает информацию об их состоянии в нагрузку (бортовую ЭВМ), а сигнал, пропорциональный температуре, - в схему управления 15.

Устройство работает следующим образом.

Устройство контроля аккумуляторов 7 контролирует текущее состояние температуры батарей и выдает сигнал в схему управления 15, которая обеспечивает вход в заданный рабочий диапазон температуры аккумуляторной батареи и удержание температуры в этом диапазоне.

В случае включения циклов разряда-заряда аккумуляторных батарей нагрузкой (бортовую ЭВМ) выдается сигнал в схему управления 15, которая обеспечивает изменение температурного рабочего диапазона.

Телеметрические данные о состоянии аккумуляторной батареи поступают по командно-измерительной радиолинии на Землю. При необходимости, по радиокомандам с Земли рабочий температурный диапазон может быть изменен в большую или меньшую сторону.

Таким образом, предлагаемый способ позволяет стабилизировать температуру аккумуляторной батареи в оптимальном рабочем температурном диапазоне (обеспечивающем лучшие характеристики аккумуляторной батареи) без циклирования температуры (колебаний температуры от нижней до верхней границы рабочего диапазона).

Результатом является повышение эффективности использования литий-ионной аккумуляторной батареи за счет более полной стабилизации температуры около оптимальной, обеспечивающей наилучшие энергетические и ресурсные показатели аккумуляторной батареи, что позволяет увеличить срок службы автономной системы электропитания и ИСЗ в целом.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 83.
10.04.2015
№216.013.3f77

Способ изготовления крупногабаритных трехслойных панелей

Изобретение относится к технологии склеивания, в частности к способу изготовления методом вакуумирования крупногабаритных трехслойных термостатированных сотовых панелей с повышенными требованиями к геометрической точности поверхности обшивки, и касается способа изготовления крупногабаритных...
Тип: Изобретение
Номер охранного документа: 0002547735
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f7f

Способ установки тепловых труб в трехслойных панелях

Изобретение относится к технологии изготовления трехслойных сотовых панелей со встроенными тепловыми трубами, применяемыми при производстве космических аппаратов, и касается способа установки тепловых труб в трехслойных панелях. Соединяют элементы сборки - обшивки с тепловыми трубами, сотовым...
Тип: Изобретение
Номер охранного документа: 0002547743
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.430b

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при создании автономных систем электропитания (СЭП) искусственных спутников Земли (ИСЗ). Техническим результатом изобретения является повышение функциональной надежности автономной системы электропитания ИСЗ....
Тип: Изобретение
Номер охранного документа: 0002548661
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4330

Электронасосный агрегат

Изобретение относится к герметичным электронасосным агрегатам (ЭНА) для систем терморегулирования космических аппаратов. Корпусы электродвигателя и насоса ЭНА из алюминиевого сплава герметично соединены и разделены цилиндрической немагнитной экранирующей оболочкой из титанового сплава. Корпус...
Тип: Изобретение
Номер охранного документа: 0002548698
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.44d9

Формирователь матричных команд

Изобретение относится к области электронной техники и автоматики и может найти применение в различных системах управления для формирования импульсных команд управления исполнительными элементами командной матрицы. Технический результат заключается в повышении надежности путем исключения условий...
Тип: Изобретение
Номер охранного документа: 0002549123
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4596

Способ питания и управления системой коррекции космического аппарата

Изобретение относится к космической технике и может быть использовано для коррекции космического аппарата (КА) с помощью электрореактивных плазменных двигателей (ЭРПД). Выбирают ЭРПД для включения, определяют необходимое время работы ЭРПД, выбирают используемые и неиспользуемые электроды...
Тип: Изобретение
Номер охранного документа: 0002549318
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.469e

Способ баллистического обеспечения полета космического аппарата

Изобретение относится к космической технике и может быть использовано для баллистического обеспечения полета космического аппарата. Измеряют температуру и давления рабочего тела (РТ) - газа, определяют на каждом шаге массовые остатки РТ до отбора части РТ из емкости рабочей системы по уравнению...
Тип: Изобретение
Номер охранного документа: 0002549582
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4797

Аккумуляторная батарея космического аппарата

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и последующей эксплуатации аккумуляторов и аккумуляторных батарей (АБ) различных типов в автономных системах электроснабжения космических аппаратов (КА), в частности искусственных спутников земли...
Тип: Изобретение
Номер охранного документа: 0002549831
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4adf

Способ получения износостойких покрытий на поверхности изделий из титана и его сплавов

Изобретение относится к области металлургии, в частности к вакуумной химико-термической обработке деталей. Способ получения износостойких покрытий на поверхности изделий из титана и его сплавов включает предварительную подготовку изделий путем их отжига и механической обработки и альфирование...
Тип: Изобретение
Номер охранного документа: 0002550674
Дата охранного документа: 10.05.2015
20.06.2015
№216.013.5629

Способ термовакуумных испытаний термокаталитических двигателей в составе космического аппарата

При термовакуумных испытаниях термокаталитических двигателей в составе космического аппарата на камеру термокаталитического разложения рабочего тела с соплом устанавливают герметичную заглушку, магистраль межблочного трубопровода через проверочную горловину и технологическую магистраль сообщают...
Тип: Изобретение
Номер охранного документа: 0002553587
Дата охранного документа: 20.06.2015
Показаны записи 51-60 из 84.
13.01.2017
№217.015.8aaf

Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности. Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника Земли (ИСЗ) заключается в проведении зарядов, хранении в заряженном состоянии подзарядов, при необходимости, разрядов,...
Тип: Изобретение
Номер охранного документа: 0002604207
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8ac9

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Использование: в области электротехники в системах электропитания искусственных спутников Земли (ИСЗ). Технический результат - повышение удельных энергетических характеристик и качества выходного напряжения автономной системы электропитания ИСЗ. Способ заключается в том, что в автономной...
Тип: Изобретение
Номер охранного документа: 0002604096
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.b74a

Способ заряда литий-ионной аккумуляторной батареи из "n" последовательно соединенных аккумуляторов

Изобретение относится к электротехнической промышленности. Способ заряда литий-ионной аккумуляторной батареи из «n» последовательно соединенных аккумуляторов заключается в контроле напряжения аккумуляторов, отключении заряда по достижении напряжения любого из аккумуляторов заданного...
Тип: Изобретение
Номер охранного документа: 0002614514
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.c815

Способ электрических проверок космического аппарата

Изобретение относится, преимущественно, к наземным электротехническим испытаниям космических аппаратов (КА). Циклограммы электрических проверок КА (1) заложены в блок (4.1) формирования директив оператора. При подключении или отключении бортовых источников КА (солнечных или аккумуляторных...
Тип: Изобретение
Номер охранного документа: 0002619151
Дата охранного документа: 12.05.2017
29.12.2017
№217.015.f115

Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли (ИСЗ) заключается в контроле напряжения аккумуляторов, проведении зарядов, разрядов, периодической...
Тип: Изобретение
Номер охранного документа: 0002638825
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f62d

Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника земли

Использование: в области электротехники. Технический результат – более точное определение времени начала балансировки аккумуляторов. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли заключается в контроле...
Тип: Изобретение
Номер охранного документа: 0002637815
Дата охранного документа: 07.12.2017
20.01.2018
№218.016.0fa8

Способ эксплуатации литий-ионной аккумуляторной батареи

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей, в том числе в автономных системах электропитания искусственных спутников Земли (ИСЗ). Способ эксплуатации литий-ионной аккумуляторной батареи...
Тип: Изобретение
Номер охранного документа: 0002633533
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.1014

Способ электропитания космического аппарата

Использование: в области электротехники. Технический результат - повышение удельных энергетических характеристик и надежности эксплуатации системы электропитания (СЭП) космических аппаратов (КА). Согласно способу электропитания космического аппарата от солнечной батареи, солнечная батарея...
Тип: Изобретение
Номер охранного документа: 0002633616
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1338

Бортовая система управления космическим аппаратом

Изобретение относится к космической технике и может быть использовано при создании бортовых систем управления космических аппаратов (КА). Бортовая система управления космическим аппаратом (КА) содержит бортовую аппаратуру командно-измерительной системы (БА КИС) со средством защиты информации от...
Тип: Изобретение
Номер охранного документа: 0002634498
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1384

Способ управления автономной системой электроснабжения космического аппарата

Использование: в области электротехники в системах электроснабжения (СЭС) космических аппаратов (КА). Технический результат - обеспечение штатного отключения сеансной нагрузки при нештатной ситуации. Способ управления автономной системой электроснабжения, которая содержит солнечную батарею и...
Тип: Изобретение
Номер охранного документа: 0002634473
Дата охранного документа: 31.10.2017
+ добавить свой РИД