×
10.07.2019
219.017.b008

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ

Вид РИД

Изобретение

№ охранного документа
0002401487
Дата охранного документа
10.10.2010
Аннотация: Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ). Согласно изобретению, способ эксплуатации никель-водородной аккумуляторной батареи в составе искусственного спутника Земли заключается в проведении зарядов с ограничением по давлению и температуре аккумуляторов, разрядов, хранении в заряженном состоянии, подзарядов для компенсации саморазряда и периодических дозарядов импульсным током. По окончании заряда, либо подзаряда, рассчитывают максимальный разбаланс аккумуляторов по емкости по формуле: ΔC=(P-P)·k, где Р - величина наибольшего давления в аккумуляторах; P - величина наименьшего давления в аккумуляторах; k - коэффициент пересчета давления водорода аккумулятора в емкость, при выявлении существенной разницы текущей емкости аккумуляторов, рассчитывают токи саморазряда аккумуляторов по формуле: Ic=ΔP·k/Δτc; где Iс - ток саморазряда аккумулятора; ΔРс - величина снижения давления водорода в аккумуляторе за расчетный промежуток времени Δτс, при равенстве токов саморазряда друг другу, в рамках погрешности измерения, проводят дозаряд импульсным током, равным среднеинтегральному току, рассчитанному по формуле: I=(1÷1,2)·(Iс+ΔI), где ΔI=ΔC·m, где m - коэффициент наклона горизонтального линейного участка тока саморазряда аккумулятора, с наименьшей текущей емкостью (давлением), определяемый по формуле: m=Iс/С, а при неравенстве токов саморазряда дозаряд импульсным током проводят среднеинтегральным током, рассчитанным по формуле: Iз=(1÷1,2)·(1c+ΔI), где Ic - наибольший ток саморазряда (ток саморазряда аккумулятора с наименьшим текущим давлением). Техническим результатом изобретения является повышение надежности эксплуатации аккумуляторной батареи. 2 ил.

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).

В процессе эксплуатации аккумуляторной батареи происходит разбалансировка аккумуляторов по емкости. Это может быть следствием разных условий охлаждения отдельных аккумуляторов в батарее, наличия в отдельных аккумуляторах внутренних микрошунтов, пассивация активной массы аккумуляторов из-за неблагоприятных условий их эксплуатации и многих других факторов. Поэтому появление в процессе разряда аккумуляторной батареи полностью разряженного аккумулятора, когда батарея в целом имеет достаточную емкость, явление весьма распространенное.

Известен способ эксплуатации аккумуляторной батареи искусственного спутника Земли (см. патент №2289178), заключающийся в проведении заряд-разрядных циклов при контроле текущей емкости никель-водородной аккумуляторной батареи, заряде никель-водородной аккумуляторной батареи постоянным током до величины (0,6-0,8) номинальной емкости никель-водородной аккумуляторной батареи с последующим дозарядом импульсным током, причем длительность зарядного импульса и длительность последующей паузы выбирают из условия обеспечения среднего зарядного тока по величине больше тока саморазряда аккумуляторов. Кроме того, величину среднего дозарядного тока выбирают в пределах 0,02-0,04 номинальной емкости.

Известный способ позволяет в определенной мере устранять возникающий разбаланс аккумуляторов, однако, процесс выравнивания - длительный по времени (до нескольких суток). Кроме того, достаточно широкий диапазон рекомендованной величины среднего дозарядного тока (в пределах 0,02-0,04 номинальной емкости), оставляет открытым вопрос выбора оптимального его значения, что может привести либо к недостаточной степени выравнивания, либо к выходу на высокий температурный уровень, что нежелательно. Все это снижает эффективность известного способа.

Наиболее близким техническим решением заявляемому способу является «Способ эксплуатации никель-водородной аккумуляторной батареи искусственного спутника Земли» (патент №2320055), заключающийся в проведении зарядов, разрядов, хранении в заряженном состоянии, периодических дозарядов импульсным током и контроле текущего состояния аккумуляторов, отличающийся тем, что дозаряд импульсным током проводят, чередуя зарядные импульсы с разрядными импульсами, причем величину зарядного импульса устанавливают равной величине номинального зарядного тока, а среднее значение зарядных импульсов устанавливают исходя из соотношения

где IЗс - действующее значение зарядных импульсов;

IPc - действующее значение разрядных импульсов;

IC - максимальная величина тока саморазряда аккумуляторов;

ήЗ - коэффициент полезного действия по зарядному току, соответствующий IС.

Этот «Способ…» принят за прототип заявляемому изобретению.

В сравнении с аналогом, прототип - более щадящий в отношении тепловыделения аккумуляторной батареи в процессе выравнивания аккумуляторов по емкости. Однако так же оставляет открытым вопрос выбора оптимального значения дозарядного тока в пределах рекомендованного диапазона. Это снижает эффективность известного способа.

Целью заявляемого изобретения является повышение надежности эксплуатации аккумуляторной батареи.

Поставленная цель достигается тем, что при проведении зарядов, с ограничением по давлению и температуре аккумуляторов, разрядов, хранении в заряженном состоянии, подзарядов для компенсации саморазряда и периодических дозарядов импульсным током, по окончании заряда, либо подзаряда, рассчитывают максимальный разбаланс аккумуляторов по емкости по формуле:

ΔС=(Рmax-Pmin)·k, где

Рmах - величина наибольшего давления в аккумуляторах;

Pmin - величина наименьшего давления в аккумуляторах;

k - коэффициент пересчета давления водорода аккумулятора в емкость, при выявлении существенной разницы текущей емкости аккумуляторов, рассчитывают токи саморазряда аккумуляторов по формуле:

Ici=ΔРСi·k/Δτci; где

i - ток саморазряда аккумулятора;

ΔРсi - величина снижения давления водорода в аккумуляторе за расчетный промежуток времени Δτci,

при равенстве токов саморазряда друг другу, в рамках погрешности измерения, проводят дозаряд импульсным током, равным среднеинтегральному току, рассчитанному по формуле:

Iз=(1÷1,2)·(Iс+ΔI), где

ΔI=ΔC·mmax, где

mmax - коэффициент наклона горизонтального линейного участка тока саморазряда аккумулятора, с наименьшей текущей емкостью (давлением), определяемый по формуле:

mmах=Ic/Cтек.min,

а при неравенстве токов саморазряда дозаряд импульсным током проводят среднеинтегральным током, рассчитанным по формуле:

Iз=(1÷1,2)·(Iсmax+ΔI),где

Icmax - наибольший ток саморазряда (ток саморазряда аккумулятора с наименьшим текущим давлением).

Действительно, в процессе длительной эксплуатации аккумуляторной батареи, с ограничением заряда по давлению водорода в аккумуляторах, все аккумуляторы распределяются по емкости так, что их токи саморазряда становятся равны друг другу. При этом возникший разбаланс аккумуляторов по емкости предопределен различием в величинах токов саморазряда аккумуляторов при предшествующей равной степени заряженности. После выравнивания токов саморазряда всех аккумуляторов, далее, в статическом режиме работы, разбаланс не увеличится, но его можно нивелировать проведением дозарядов (по сути, это дозированный перезаряд аккумуляторной батареи - заряд выше нормально допустимой емкости).

Однако следует отметить, что состояние аккумуляторов, выровненных по емкости, в составе эксплуатируемой аккумуляторной батареи устойчиво, только при условии поддержания степени заряда «слабых» аккумуляторов не ниже достигнутого, в процессе дозаряда, уровня заряженности. В противном случае, разбаланс аккумуляторов по емкости через некоторое время вновь восстановится.

Для снижения величины разбаланса аккумуляторов по емкости перед началом теневых орбит проводят дозаряд (перезаряд) аккумуляторной батареи импульсным током (см. патент №2320055). При этом полностью заряженные аккумуляторы (подавляющее большинство) зарядную энергию превращают в тепло, а «слабые» аккумуляторы (от одного аккумулятора до (5-10)% от общего количества аккумуляторов в аккумуляторной батарее) получают возможность достичь более высокой степени заряженности.

Совершенно очевидно, что такой процесс выравнивания аккумуляторов по емкости сопровождается повышенным тепловыделением, что требует создания системы терморегулирования ИСЗ с возможностью сброса избыточного тепла соответствующей мощности. При этом аккумуляторы, подвергающиеся перезаряду, имеют повышенную температуру, что отрицательно влияет на их ресурсные характеристики. Поэтому, при проведении выравнивания аккумуляторов по емкости, важное значение имеет ограничение (оптимизация) процесса перезаряда.

В заявляемом изобретении процесс перезаряда строго дозируется заданием величины среднеинтегрального тока дозаряда на уровне тока саморазряда «слабого» аккумулятора при планируемой степени его заряженности. При этом допускается увеличение величины среднеинтегрального тока дозаряда до 20%.

На фиг.1 представлены графики изменения токов саморазряда аккумуляторной батареи 40НВ-70 (разработки ОАО «Сатурн», г.Краснодар) в зависимости от степени их заряженности.

При этом график «а» соответствует аккумулятору аккумуляторной батареи с повышенным саморазрядом, а график «б» соответствует «нормальному» аккумулятору аккумуляторной батареи.

Из представленного графика видно, что если заряд аккумуляторной батареи ограничивать по аккумулятору «б» в точке «в», то емкость аккумулятора «а» неизбежно придет в точку «г». В этом случае, если разряд аккумуляторной батареи ограничивают по минимальному напряжению любого аккумулятора, аккумуляторная батарея потеряет примерно половину своей емкости.

Для устранения имеющегося разбаланса аккумуляторов по емкости, необходимо сообщить аккумулятору «а» емкость, достаточную для перехода его тока саморазряда на вертикальный участок графика. Для обеспечения этого предлагается установить среднеинтегральный ток дозаряда равным (или больше до 20%) по величине току саморазряда этого аккумулятора при планируемой степени его заряженности. Для этого к текущему току саморазряда следует прибавить величину тока исходя из разницы в текущих емкостях аккумуляторов «а» и «б» и условной линейности графика саморазряда (на фиг.1 график саморазряда аккумулятора «а» продолжен пунктиром).

На фиг.2 приведена функциональная схема автономной системы электропитания, поясняющая работу по предлагаемому способу.

Устройство содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 - к входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов (напряжения, давления, температуры) 7, связанное входом с аккумуляторной батареей 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).

Кроме того, параллельно аккумуляторной батарее 4 подключено разрядное сопротивление R через коммутатор К, управляемый нагрузкой 2 (бортовой ЭВМ или по командам с Земли через командно-измерительную радиолинию).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 8.

Зарядный преобразователь состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе Тр, транзисторах Т1 и Т2 и выпрямителя на диодах D1 и D2.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра С1 и выходного фильтра на диоде D, дросселе L и конденсаторе С.

Схемы управления преобразователями 10, 12, 14 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2 (с командно-измерительной радиолинией).

Устройство работает следующим образом. В процессе эксплуатации аккумуляторная батарея 4 работает в основном в режиме хранения и периодических дозарядов от солнечной батареи 1 через зарядный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности на случай аварийных ситуаций (потеря ориентации ИСЗ на Солнце) или прохождения ИСЗ штатных теневых участков орбиты.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении ИСЗ теневых участков орбиты, либо при нарушении ориентации на Солнце нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.

Устройство контроля аккумуляторов 7 контролирует текущую емкость аккумуляторов и передает информацию об их состоянии в нагрузку (бортовую ЭВМ).

В бортовую ЭВМ ИСЗ «закладывается» программа, реализующая контроль аккумуляторной батареи и управление ее режимами работы:

1. Контролируется текущее состояние аккумуляторной батареи по давлению аккумуляторов.

2. При достижении разбаланса аккумуляторов (ΔС=(Рmах-Pmin)·k) наперед заданной величины (или перед началом периода с «теневыми» участками орбиты), по команде с Земли или автоматически, включают программу, реализующую дозаряд аккумуляторной батареи импульсным током.

3. Величину среднеинтегрального тока дозаряда устанавливают, в зависимости от токов саморазряда аккумуляторов, рассчитанных исходя из соотношения: Iсi=ΔРсi·k/Δτci, по формулам:

Iз=(1÷1,2)·(Iс+ΔI) - при равенстве токов саморазряда,

Iз=(1÷1,2)·(Iсmax+ΔI) - при неравенстве токов саморазряда.

При этом величина зарядного импульса соответствует оптимальному току заряда аккумуляторной батареи, позволяющему заряжать аккумуляторы с наибольшим коэффициентом полезного действия. Разрядные импульсы могут формироваться в рамках известного изобретения по патенту №2320055.

4. Включение и отключение заряда (зарядных импульсов) реализуется непосредственно управлением работой схемы управления 10 зарядного преобразователя 5 от нагрузки (бортовой ЭВМ) 2, а включение и отключение разрядных импульсов - управлением коммутатором К, подключающим разрядное сопротивление R.

Таким образом, предлагаемый способ позволяет устранять разбаланс аккумуляторов по емкости при оптимальном тепловыделении, что повышает надежность эксплуатации никель-водородной аккумуляторной батареи, надежность автономной системы электропитания и ИСЗ в целом.

Способ эксплуатации никель-водородной аккумуляторной батареи в составе искусственного спутника Земли, заключающийся в проведении зарядов, с ограничением по давлению и температуре аккумуляторов, разрядов, хранении в заряженном состоянии, подзарядов для компенсации саморазряда и периодических дозарядов импульсным током, отличающийся тем, что по окончании заряда либо подзаряда рассчитывают максимальный разбаланс аккумуляторов по емкости по формуле:ΔC=(P-P)·k,где Р - величина наибольшего давления в аккумуляторах;P - величина наименьшего давления в аккумуляторах;k - коэффициент пересчета давления водорода аккумулятора в емкость, при выявлении существенной разницы текущей емкости аккумуляторов рассчитывают токи саморазряда аккумуляторов по формуле:Ic=ΔPci·k/Δτc,где Ic - ток саморазряда аккумулятора;ΔРc - величина снижения давления водорода в аккумуляторе за расчетный промежуток времени Δτc,при равенстве токов саморазряда друг другу, в рамках погрешности измерения, проводят дозаряд импульсным током, равным среднеинтегральному току, рассчитанному по формуле:Iз=(1÷1,2)·(Iс+ΔI),где ΔI=ΔC·m,где m - коэффициент наклона горизонтального линейного участка тока саморазряда аккумулятора, с наименьшей текущей емкостью (давлением), определяемый по формуле:m=Iс/С,а при неравенстве токов саморазряда дозаряд импульсным током проводят среднеинтегральным током, рассчитанным по формуле:Iз=(1÷1,2)·(Ic+ΔI),где Ic - наибольший ток саморазряда (ток саморазряда аккумулятора с наименьшим текущим давлением).
Источник поступления информации: Роспатент

Показаны записи 61-70 из 83.
27.09.2015
№216.013.7ec8

Способ измерения тепловых полей электрорадиоизделий

Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование...
Тип: Изобретение
Номер охранного документа: 0002564053
Дата охранного документа: 27.09.2015
20.04.2016
№216.015.3643

Космический аппарат блочно-модульного исполнения

Изобретение относится к конструкции и компоновке космических аппаратов. Космический аппарат блочно-модульного исполнения содержит модуль служебных систем, первый модуль полезной нагрузки (МПН) и второй модуль полезной нагрузки. Первый МПН устанавливается на второй модуль МПН так, что стартовая...
Тип: Изобретение
Номер охранного документа: 0002581274
Дата охранного документа: 20.04.2016
10.08.2016
№216.015.55de

Стенд для определения массы и координат центра масс изделия

Изобретение относится к области измерительной техники, в частности для измерений массовых характеристик изделий авиационной и космической областей машиностроения. Стенд состоит из стола, снабженного тремя установочными сферическими опорами. Положение сферической опоры на столе можно менять в...
Тип: Изобретение
Номер охранного документа: 0002593644
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.72c0

Способ беспроводной передачи, приема информации

Изобретение относится к области передачи и приема информации с применением магнитоэлектрических волн и может быть использовано при разработке и создании наземных, спутниковых радиолиний в традиционном радиочастотном спектре и в звуковом диапазоне частот. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002598312
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7406

Способ изготовления гибкого электрообогревателя

Изобретение относится к изготовлению гибких электрообогревателей, создающих температуру до 150°С, которые применяются для поддержания заданной температуры бортовой аппаратуры и элементов конструкции космических аппаратов, воздушного, морского или наземного транспорта и др. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002597836
Дата охранного документа: 20.09.2016
01.03.2019
№219.016.cb84

Способ цифровой фильтрации сигналов

Изобретение относится к радиотехнике, радиолокации, радионавигации и может быть использовано в системах, где требуется проводить цифровую обработку сигналов с неизвестной структурой на фоне шума. Достигаемый технический результат - значительный выигрыш в помехоустойчивости. Способ цифровой...
Тип: Изобретение
Номер охранного документа: 0002395158
Дата охранного документа: 20.07.2010
01.03.2019
№219.016.cdf4

Способ формирования помехоустойчивых сигналов

Изобретение относится к радиотехнике и может быть использовано для повышения помехоустойчивости сигналов в широкополосных системах связи. Достигаемый технический результат - повышение помехоустойчивости сигнала в системах связи. Способ формирования помехоустойчивых сигналов основан на...
Тип: Изобретение
Номер охранного документа: 0002412551
Дата охранного документа: 20.02.2011
01.03.2019
№219.016.ce0d

Способ предотвращения несанкционированного доступа в спутниковых системах связи и устройство для его осуществления

Изобретение относится к радиотехнике и может быть использовано для предотвращения несанкционированного доступа в спутниковых системах связи. Технический результат - повышение вероятности предотвращения несанкционированного доступа в режиме реального времени. Согласно изобретению предотвращение...
Тип: Изобретение
Номер охранного документа: 0002419252
Дата охранного документа: 20.05.2011
11.03.2019
№219.016.d884

Автономная система электропитания космического аппарата

Изобретение относится к электротехнике и может быть использовано при проектировании автономных систем электропитания космических аппаратов. Технический результат состоит в повышении эффективности использования первичного источника ограниченной мощности. Автономная система электропитания...
Тип: Изобретение
Номер охранного документа: 0002395148
Дата охранного документа: 20.07.2010
20.03.2019
№219.016.e540

Способ проведения ресурсных испытаний аккумуляторов космического назначения и устройство для его реализации

Изобретение относится к системам энергоснабжения космических объектов, в частности ИСЗ. Способ заключается в проведении циклирования с контролем энергетических характеристик последовательно соединенных аккумуляторов (А) в составе их модуля. Испытания проводят в составе действующего ИСЗ. Число А...
Тип: Изобретение
Номер охранного документа: 0002390477
Дата охранного документа: 27.05.2010
Показаны записи 61-70 из 84.
20.01.2018
№218.016.191c

Способ изготовления космического аппарата

Изобретение относится к космической технике. Способ изготовления космического аппарата (КА) включает изготовление комплектующих, сборку КА, содержащего систему электропитания, проведение испытаний КА. Дополнительно используют имитатор системы электропитания КА, состоящий из наземного источника...
Тип: Изобретение
Номер охранного документа: 0002636244
Дата охранного документа: 21.11.2017
10.05.2018
№218.016.39d7

Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата

Использование: в области электротехники в автономных системах электропитания (СЭП) космических аппаратов (КА). Технический результат - повышение надежности эксплуатации КА путем ограничения величины кратковременного понижения выходного напряжения системы электропитания при отказе элементов,...
Тип: Изобретение
Номер охранного документа: 0002647120
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3bdb

Способ электрических проверок космического аппарата

Изобретение относится к наземным электрическим проверкам космических аппаратов (КА) при их изготовлении. В процессе проверок КА (1) используют: имитаторы ИБС (2) солнечных и имитаторы ИАБ (3) аккумуляторных батарей. В ИБС (2) и ИАБ (3) встроены ЭВМ, соответственно: (2-1) и (3-1). Количество...
Тип: Изобретение
Номер охранного документа: 0002647806
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3c2b

Способ электрических проверок космического аппарата

Изобретение относится к способу электрических проверок космического аппарата (КА). Для электрической проверки производят включение и выключение КА, подключение и отключение наземных имитаторов бортовых источников электропитания, автоматизированную выдачу команд управления, допусковое...
Тип: Изобретение
Номер охранного документа: 0002647808
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.48f8

Способ передачи данных

Изобретение относится к передаче данных, а именно к протоколам, используемым при передаче и приеме информационных данных. Технический результат – повышение надежности передачи информации. Способ передачи данных, заключающийся в использовании сетевого транспортного протокола (СТП); в обеспечении...
Тип: Изобретение
Номер охранного документа: 0002651242
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4e82

Система электропитания космического аппарата

Изобретение относится к области преобразовательной техники, в частности к бортовым системам электропитания (СЭП) космических аппаратов (КА), и может быть использовано при проектировании и создании систем электропитания автоматических космических аппаратов на основе солнечных и аккумуляторных...
Тип: Изобретение
Номер охранного документа: 0002650875
Дата охранного документа: 18.04.2018
11.06.2018
№218.016.6115

Способ изготовления космического аппарата

Изобретение относится к космической технике. Способ изготовления космического аппарата (КА) включает проведение сборки КА, содержащего систему электропитания с солнечными батареями, аккумуляторными батареями и стабилизированным преобразователем напряжения с общей шиной, связанной с корпусом КА,...
Тип: Изобретение
Номер охранного документа: 0002657134
Дата охранного документа: 08.06.2018
16.06.2018
№218.016.620e

Способ изготовления космического аппарата

Изобретение относится к изготовлению и наземным испытаниям космических аппаратов (КА), преимущественно телекоммуникационных спутников. Система электропитания КА содержит солнечную батарею (1), подключенную к нагрузке (3) через соединители (1-3, 1-2), и стабилизированный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002657795
Дата охранного документа: 15.06.2018
19.01.2019
№219.016.b238

Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к области электротехники, а именно к способу эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания, и может быть использовано в автономных системах электропитания искусственного спутника Земли (ИСЗ). Способ включает проведение зарядов, в...
Тип: Изобретение
Номер охранного документа: 0002677635
Дата охранного документа: 18.01.2019
24.01.2019
№219.016.b351

Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата и космический аппарат для его реализации

Группа изобретений относится к системе электропитания космического аппарата (КА). В способе питания нагрузки постоянным током в автономной системе электропитания КА от первичного источника, например солнечной батареи (СБ), и вторичного источника электроэнергии, например аккумуляторной батареи...
Тип: Изобретение
Номер охранного документа: 0002677963
Дата охранного документа: 22.01.2019
+ добавить свой РИД