×
10.07.2019
219.017.af3d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДНЫХ НАНОТРУБОК ИЗ УГЛЕВОДОРОДНОГО ГАЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности и может быть использовано для получения водорода и углеродного наноструктурного материала. Предварительно в среде инертного газа осуществляют распыление катализатора до наноразмерных частиц путем испарения анодного графитового электрода, внутри которого устанавливают проволоку из металла, который используют в качестве катализатора, диаметром 0,5 мм и менее. Затем инертный газ откачивают, зажигают электрическую дугу переменного тока методом касания электродов с последующим увеличением межэлектродного расстояния до 0,3÷0,5 мм и в плазме электрического разряда осуществляют высокотемпературный пиролиз углеводородного газа при давлении в реакторе 0,5÷2 атм с получением водорода и углеродных наноструктур. Рост углеродных наноструктур, представляющих собой преимущественно одно- и многослойные нанотрубки без примесей других углеродных структур углерода, происходит на синтезированных частицах катализатора. В качестве инертного газа используют гелий. В качестве углеводородного газа используют метан, попутный нефтяной газ, ацетилен, пропан, бутан, природный газ. В качестве катализатора используют палладий, железо, никель, кобальт. Изобретение позволяет получать нанотрубки с относительно однородным распределением по размерам и высоким отношением длина/диаметр. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области химической промышленности, в частности к каталитическому способу производства углеродного наноструктурного материала из углеводородов. Получаемый углеродный наноструктурный материал может быть использован в производстве сорбентов, катализаторов, композиционных материалов. Изобретение относится также к энергетике и получаемый углеродный наноструктурный материал может быть использован в дожигающих устройствах энергетических установок, фильтрах.

Современные подходы к производству углеродного наноструктурного материала основаны на трех основных способах: лазерная абляция графита, высокотемпературное каталитическое разложение углеводородов или монооксида углерода, электродуговое испарение графита или графитосодержащих композитов.

Лазерная абляция, несмотря на очевидные недостатки ввиду высокой энергоемкости производства, используется рядом компаний, так как подбор материалов мишени, газового состава и параметров лазера можно добиться однородного состава продуктов, в частности производства только однослойных нанотрубок с относительно узкой функцией распределения по диаметру [Guo Т., Science (1992) 257, 1661, Thess A., et al. Science (1996) 273, 483].

Метод высокотемпературного каталитического разложения углеводородов отличается тем, что в качестве сырья используются различные молекулярные соединения углерода, что позволяет полностью избежать энергозатрат, связанных с испарением графита, реакции происходят при меньшей температуре. Варьирование исходного углеводорода, состояния катализатора и условий реакции позволяет получать различные виды нанотрубок. В настоящее время большая часть однослойных нанотрубок малого диаметра, доступных на рынке, производится в реакции каталитической диспропорцинации монооксида углерода. Критическим моментом этого вида технологий является приготовление катализатора, которым являются малые частицы ряда переходных металлов - никеля, железа, кобальта. Для приготовления катализатора используются различные методики - магнетронное, электролучевое и катодное испарение металлов, химическое осаждение из растворов и газовой фазы металлоорганических соединений, химическое восстановление солей [Ago H., et al., Appl.Phys Lett. (2000) 77 (1), 79, Fan. S, et.al., Science (1999) 283, 512].

К общим недостаткам следует отнести также влияние подложки, на которую нанесен катализатор, отсутствие выделенного направления роста и низкая скорость реакции. Для стабилизации размеров каталитических частиц используются различные виды подложек, матрицы из цеолита, в частности используются реакторы с кипящим слоем с частицами цеолитов или керамических частиц с размещенным на них катализатором [Hemadi К., et al., Zeolites (1996) 17 (5-6), 416, Nagaraju N., et al., Mol. Catal. A (2002) 181 (1-2), 57].

Впервые углеродные нанотрубки были получены электродуговым методом. К достоинствам этого метода относится довольная высокая производительность, к недостаткам - высокая энергоемкость и неселективность продукта - в одном цикле производятся однослойные и многослойные нанотрубки с большим разбросом по размерам и с большим количеством примесей [Ando Y., et al., Carbon (1997) 35 (1), 153, Zhao X., et al., Carbon (1997) 35 (6), 775].

Для увеличения производительности процесс стимулируют катализаторами. Для уменьшения энергоемкости используют различные усовершенствования: комбинированные способы, рекуперация отходящих после пиролиза газов, активация и подогревание катализатора отходящими после пиролиза газами, перемешивание смеси газа и катализатора, использование воздействия ультразвуком или электромагнитным излучением на рабочую смесь газа и катализатора.

Известен комбинированный способ получения технического углерода и водорода, при котором исходный поток сырья подают в камеру плазмогенератора, затем в плазмохимический блок с последующим пиролизом и на фазоразделительное устройство. Часть углеводородного сырья сначала подогревают в теплообменнике, затем коаксиально вводят в термический факел газовой горелки, причем в камере плазмогенератора используют простой электрический разряд, горящий между двумя графитовыми электродами [Комбинированный способ получения технического углерода и водорода и установка для его осуществления. Заявка на патент РФ №2006115746]. К достоинствам этого способа следует отнести значительное уменьшение энергозатрат за счет использования рекуперации отходящих после пиролиза газов и высокую степень использования исходных углеводородов. Недостатком этого способа является низкая производительность.

Известен способ получения углеродного материала путем пиролиза углеводородов при повышенной температуре на катализаторе, содержащем переходные металлы, при непрерывном противоточном перемещении слоя катализатора и газового потока, в двух или более температурных зонах, в одной или нескольких из которых при температуре 450-600°С проводят активирование катализатора отходящими после пиролиза газами, при времени пребывания катализатора 5-180 мин, а в другой или других зонах при температуре 550-1000°С проводят пиролиз углеводородов, при времени пребывания катализатора в этой или этих зонах 0,5-180 мин [Способ получения углеродного материала. Патент РФ №2258031]. Достоинством способа является то, что частичное нагревание и активация катализатора отходящими после пиролиза газами позволяет уменьшить энергозатраты, снизить расход реагентов и достичь высокой степени использования исходных углеводородов. Однако этому способу свойственны такие недостатки, как низкая производительность и неселективность продукта.

Наиболее близким по технической сущности и достигаемому результату является способ получения углерода и водорода из углеводородного газа, который рассматривается в дальнейшем в качестве прототипа, описанный в патенте РФ №2317943 [Способ получения углерода и водорода из углеводородного газа и устройство для получения углерода и водорода из углеводородного газа. Патент РФ №2317943].

В соответствии с прототипом процесс получения углерода и водорода из углеводородного газа, включающий предварительный нагрев и последующее разложение углеводородного газа с выделением и сепарацией углерода и водорода в плазме электрического разряда, возбужденного в сверхвысокочастотном электромагнитном поле, отличающийся тем, что предварительный нагрев углеводородного газа осуществляют совмещенным действием энергии сверхвысокочастотного электромагнитного поля в тепловой зоне проточного реактора протяженной формы, равномерно заполненной ассоциированным, мелкоструктурным, газопроницаемым, электропроводящим веществом-инициатором, разложение углеводородного газа осуществляют на выходе из тепловой зоны реактора при повышенной в 100 и более раз по сравнению с тепловой зоной реактора напряженности сверхвысокочастотного электрического поля.

Как прототип, так и настоящее изобретение направлены на способ реализации полного цикла разложения углеводородного газа на водород и углерод с помощью плазменного реактора. Отличие состоит в различном типе плазменного источника: коронный разряд и сверхвысокочастотное поле у прототипа и дуговой разряд в настоящем способе. Продукты пиролиза представляют собой водород и углеродный материал. К достоинствам прототипа, как способа получения водорода и углерода, можно отнести эффективный процесс каталитического пиролиза, определенный выбранной схемой нагрева с использованием сверхвысокочастотного поля. Недостатком по отношению к предлагаемому способу является то, что на выходе содержатся различные аллотропные модификации углерода. Проблема отделения определенных модификаций в настоящее время не решена.

Задачей, на решение которой направлено настоящее изобретение, является разработка способа получения из углеводородного газа водорода и углеродного наноструктурного материала с высокой селективностью, преимущественно состоящего из одно- и многослойных углеродных нанотрубок без примеси других модификаций углерода.

Поставленная задача решается путем использования новых операций в последовательности операций способа разложения углеводородного газа на водород и углерод в плазменном реакторе. Новым в способе является то, что катализатор предварительно распыляют в среде инертного газа, выбираемого из группы: гелий, неон, аргон, криптон, ксенон, радон. Синтезированные частицы металла в дальнейшем служат катализатором для роста углеродных нанотрубок. Это позволяет осуществить конверсию при плазменно-дуговом пиролизе углеводородного газа в водород и углеродные нанотрубки без образования других углеродных структур.

Суть изобретения состоит в том, что предварительно в дуге постоянного тока, которую реализуют в среде инертного газа между двумя графитовыми электродами, при низком давлении осуществляют распыление анода, внутрь которого по его оси устанавливают проволоку из соответствующего металла диаметром 0,5 мм и менее. В этих условиях распыление металла, выбираемого из ряда: палладий, никель, железо, кобальт, приводит к образованию наноразмерных частиц металла, которые в дальнейшем служат катализатором для роста углеродных нанотрубок. Затем инертный газ откачивают и в электрической дуге переменного тока, которую зажигают методом касания электродов, с последующим увеличением межэлектродного расстояния до 0,3-0,5 мм, что позволяет поддерживать постоянными параметры горения дуги, осуществляют высокотемпературный пиролиз углеводородного газа. В качестве углеводородного газа используют метан, попутный нефтяной газ, ацетилен, пропан, бутан или природный газ, или смесь углеводородных газов. Высокотемпературный пиролиз углеводородного газа осуществляют при давлении 0,5÷2 атм. В области дуги происходит полное разложение углеводородного газа на водород и углерод. Рост углеродных нанотрубок происходит на каталитических частицах металла непосредственно на одном из электродов.

Достигаемый технический результат - высокая селективность получаемого материала, состоящего преимущественно из нанотрубок с характерными размерами 10÷100 нм. Относительно однородное распределение по размерам и высокое отношение длина/диаметр делает эти структуры привлекательными с точки зрения применения для композитных материалов - полимеров и керамик, армированных нанотрубками. Такие материалы обладают повышенной прочностью, электро- и теплопроводностью. Такие нанотрубки являются также идеальным носителем для различных катализаторов в химической промышленности, дожигающих устройствах энергетических установок, фильтрах.

Способ может быть реализован в вертикальном плазмодуговом реакторе, включающем герметичную вакуумную камеру, изготовленную из нержавеющей стали, с графитовыми электродами, конструкция которых позволяет варьировать межэлектродное расстояние для сохранения условий горения дуги, системы вакуумной откачки, электропитания, водяного охлаждения, подачи и сброса газа, измерительные системы для контроля давления и электрических параметров разряда, а также измерительные системы для контроля температуры, расхода газовой фазы и ее состава.

Способ осуществляют путем выполнения ряда последовательных операций. Вакуумную камеру реактора заполняют гелием или другим инертным газом, выбранным из группы: неон, аргон, криптон, ксенон, радон. Затем в дуге постоянного тока, которую реализуют между двумя графитовыми электродами, при низком давлении осуществляют распыление анода, внутри которого по его оси устанавливают проволоку из соответствующего металла диаметром 0,5 мм и менее. Это позволяет синтезировать каталитические частицы металла необходимого размера (10÷15 нм). Увеличение давления приводит к увеличению размеров частиц и, как следствие, к увеличению диаметра углеродных нанотрубок. Уменьшение давления приводит к обратному эффекту, т.е. к уменьшению размеров каталитических частиц и, как следствие, уменьшению диаметров углеродных нанотрубок. Затем откачивают инертный газ, зажигают электрическую дугу переменного тока методом касания электродов с последующим увеличением межэлектродного расстояния до 0,3÷0,5 мм, и при давлении 0,5÷2 атм осуществляют высокотемпературный пиролиз углеводородного газа, выбираемого из ряда: метан, попутный нефтяной газ, ацетилен, пропан, бутан, природный газ. Рост углеродных наноструктур, представляющих преимущественно одно- и многослойные нанотрубки, без образования других углеродных структур, происходит непосредственно на одном из электродов на каталитических частицах металла.

Пример.

Шаг 1. Изготавливают композитный металл-графитовый электрод. Металл -палладий. Весовое соотношение палладия к графиту 1:9.

Шаг 2. Объем рабочей камеры откачивают до давления 10-2 тор.

Шаг 3. В рабочую камеру напускают гелий до давления 25 тор.

Шаг 4. Подключают источник постоянного тока. Положительное напряжение подключают к композиционному электроду. Устанавливают ток 100 А.

Шаг 5. Методом соприкосновения электродов зажигают электрическую дугу. Напряжение на разряде поддерживают в диапазоне 25-30 В.

Шаг 6. После распыления анода электропитание отключают. Электроды охлаждаются в течение часа. Затем напускают воздух до атмосферного давления.

Шаг 7. Устанавливают графитовый электрод вместо распыленного композиционного электрода.

Шаг 8. Объем рабочей камеры откачивают до давления 10-2 тор.

Шаг 9. В рабочую камеру напускают метан до давления 375 тор.

Шаг 10. Подключают источник переменного тока. Устанавливают ток 100 А.

Шаг 11. Зажигают дугу переменного тока на 10 минут.

Шаг 12. После охлаждения и напуска атмосферного воздуха с поверхности электрода диаметром 20 мм (служившего катодом при распылении композитного электрода) собирают углеродный конденсат.

Морфология синтезированного материала приведена на чертеже.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 68.
11.03.2019
№219.016.db7a

Биочип для определения мутаций в гене галактоза-1-фосфат-уридил трансферазы, вызывающих поражение печени у новорожденных детей

Изобретение относится к медицине и биотехнологии. Получен биочип, позволяющий диагностировать заболевание галактоземия 1 типа. Также предложен способ использования полученного биочипа для детекции точковых мутаций в гене GALT. Данный способ включает двухраундный мультиплексный ПЦР с получением...
Тип: Изобретение
Номер охранного документа: 0002423521
Дата охранного документа: 10.07.2011
13.03.2019
№219.016.dedc

Термостабильная днк-лигаза из археи рода acidilobus

Изобретение относится к биотехнологии и представляет собой рекомбинантную термостабильную ДНК-лигазу Acidilobus sp 1904, проявляющую лигазную активность в присутствии ионов магния, в диапазоне значений рН от 6.8 до 7.4, концентраций натрия хлорида от 0 до 100 мМ. ДНК-лигаза состоит из 607...
Тип: Изобретение
Номер охранного документа: 0002413767
Дата охранного документа: 10.03.2011
13.03.2019
№219.016.dedd

Способ биосинтеза цефалоспорина с с использованием нового штамма acremonium chrysogenum вкм f-4081d

Изобретение относится к области биотехнологии. Предложен способ получения антибиотика цефалоспорина С. Используют новый штамм-продуцент антибиотика Acremonium chrysogenum BKM F-4081D. Acremonium chrysogenum BKM F-4081D культивируют на ферментационной питательной среде, содержащей источники...
Тип: Изобретение
Номер охранного документа: 0002426793
Дата охранного документа: 20.08.2011
29.03.2019
№219.016.f4cc

Пористый композиционный хитозан-желатиновый матрикс для заполнения костных дефектов

Изобретение относится к области медицины и касается композиционных материалов для пластической реконструкции поврежденных костных тканей. Высокопористые эластичные хитозан-желатиновые матриксы с пористостью более 90% состоит из хитозана и содержит желатин до 60 мас.% и лаурилсульфат натрия до...
Тип: Изобретение
Номер охранного документа: 0002421229
Дата охранного документа: 20.06.2011
04.04.2019
№219.016.fcaa

Способ лечения рака молочной железы с помощью определения индивидуальной чувствительности к химиотерапии культуральным методом и применения комбинации растительных цитостатиков

Изобретение относится к области медицины и представляет собой способ лечения рака молочной железы путем применения растительных цитостатиков, отличающийся тем, что предварительно у пациента получают фрагмент опухоли, культивируют ее клетки и добавляют комбинацию экстракта аконита джунгарского и...
Тип: Изобретение
Номер охранного документа: 0002470658
Дата охранного документа: 27.12.2012
04.04.2019
№219.016.fcad

Способ лечения последствий герпетического менингоэнцефалита с помощью аутологичных мезенхимальных стволовых клеток

Изобретение относится к области медицины, а именно неврологии, и может быть использовано для лечения осложнений, вызванных герпетическим менингоэнцефалитом. Для достижения лечебного эффекта эндолюмбально вводят 1000000 аутологичных мезенхимальных стволовых клеток, а затем внутримышечно...
Тип: Изобретение
Номер охранного документа: 0002470649
Дата охранного документа: 27.12.2012
10.04.2019
№219.017.064d

Способ проведения ферментативного гидролиза белков, иммобилизованных на подложке сканирующего зондового микроскопа

Изобретение относится к биофизике и медицинской протеомике. Для проведения специфичного ферментативного гидролиза белков, иммобилизованных на поверхности подложки сканирующего зондового микроскопа, белки подвергают воздействию ультразвука и сайт-специфичного фермента в буферном растворе с...
Тип: Изобретение
Номер охранного документа: 0002419796
Дата охранного документа: 27.05.2011
10.04.2019
№219.017.077b

Способ получения ацетата калия

Изобретение относится к способу получения ацетата калия взаимодействием гидроксида калия с водным раствором уксусной кислоты и последующими стадиями обработки полученного ацетата калия. Способ включает фильтрационную очистку полученного раствора ацетата калия, упаривание фильтрата при...
Тип: Изобретение
Номер охранного документа: 0002455279
Дата охранного документа: 10.07.2012
10.04.2019
№219.017.084b

Низкомолекулярные тройные сополимеры винилиденфторида и мономера, содержащего фторсульфатную группу

Изобретение имеет отношение к низкомолекулярным тройным сополимерам винилиденфторида и мономера, содержащего фторсульфатную группу, общей формулы: где R=-CFOSOF, -CFO(CF)OSOF; l=29-66; m=9-18; n=2,4-4 со среднечисленной молекулярной массой 3000-9000. Технический результат - получение...
Тип: Изобретение
Номер охранного документа: 0002432366
Дата охранного документа: 27.10.2011
10.04.2019
№219.017.095f

Способ очистки уксусной кислоты

Изобретение относится к усовершенствованному способу очистки уксусной кислоты, которая может быть применена в микроэлектронике, жидкостной хроматографии, в химической, пищевой, медицинских промышленностях. Способ очистки включает обработку исходной уксусной кислоты химическим реагентом,...
Тип: Изобретение
Номер охранного документа: 0002440969
Дата охранного документа: 27.01.2012
Показаны записи 11-12 из 12.
05.07.2019
№219.017.a554

Способ вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ включает импульсное скоростное вакуумирование в вакуумной камере при помощи вакуумного насоса, ресивера, трубопроводов с быстродействующими...
Тип: Изобретение
Номер охранного документа: 0002693586
Дата охранного документа: 03.07.2019
23.02.2020
№220.018.0610

Способ повышения эффективности вакуумной дезинтеграции золотоносных глинистых пород

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Способ вакуумной дезинтеграции золотоносных глинистых пород включает импульсное скоростное вакуумирование за время не более 1 секунды с достижением...
Тип: Изобретение
Номер охранного документа: 0002714787
Дата охранного документа: 19.02.2020
+ добавить свой РИД