×
10.07.2019
219.017.adba

МОНОСТАТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002377612
Дата охранного документа
27.12.2009
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к метеорологии к способам для определения физических параметров атмосферы и позволяет получать информацию о высоте нижней границы облачности путем измерения расстояния до выбранного в качестве объекта измерения фрагмента облачности. Техническим результатом изобретения является повышение достоверности и точности определения расстояния до выбранного в качестве объекта измерения фрагмента нижней облачности, имеющего заранее неизвестные линейные размеры. Высота нижней границы облачности определяется путем получения двух разномасштабных изображений выбранного в качестве объекта измерения фрагмента нижней облачности посредством двух идентичных оптико-электронных приборов, которые располагают так, чтобы их вертикальные линии визирования совпадали, передние главные плоскости оптических систем были совмещены, при этом оптические системы оптико-электронных приборов имеют различные фокусные расстояния. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к метеорологии, к способам для определения физических параметров атмосферы, и позволяет получать информацию о высоте нижней границы облачности (НГО) путем измерения расстояния до выбранного в качестве объекта измерения фрагмента облачности.

Известен способ измерения высоты НГО посредством измерителя [1], заключающийся в наблюдении пятна света, образованного на основании облака направленным вертикально вверх лучом прожектора, причем прожектор и фотоприемник разнесены на известное расстояние, а их оптические оси расположены в одной вертикальной плоскости. Недостатками этого способа являются малый ресурс работы источника световых импульсов измерителя, невысокая точность получаемых данных и невозможность проведения измерений в условиях солнечной засветки и несплошной облачности.

Известны также светолокационные способы измерения высоты нижней границы облачности, по которым в измерителях в качестве источника световых импульсов используются твердотельные лазеры [2, 3].

Недостатками этого способа являются ограниченный ресурс работы твердотельного лазера, высокая стоимость изготовления и эксплуатации измерителя.

Кроме этого, недостатками способов по [1, 2, 3] являются большие габариты, значительная потребляемая мощность измерителей и наличие активного излучателя.

Наиболее близким к предлагаемому техническому решению является принятый за прототип способ определения расстояния при помощи оптического прибора (ОП) [4]. Способ заключается в определении размера изображения объекта измерения в плоскости изображения ОП до и после перемещения ОП по направлению к объекту измерения (или от него) вдоль линии визирования ОП на фиксированное расстояние, после чего по формуле определяют расстояние до объекта измерения по формуле

где s - расстояние, на которое был перемещен ОП;

- размер изображения объекта измерения в плоскости изображения ОП до перемещения;

- размер изображения объекта измерения в плоскости изображения ОП после перемещения.

Признаки прототипа, которые совпадают с признаками заявляемого технического решения следующие: выбирают в качестве объекта измерения фрагмент нижней границы облачности, получают два разномасштабных изображения выбранного объекта, определяют размеры изображения объекта измерения в плоскости изображения оптического прибора, после чего рассчитывают высоту НГО.

Недостатками данного способа являются необходимость определения расстояния механического перемещения ОП и соблюдение требования перемещения ОП строго вдоль его линии визирования, что существенно снижает точность и затрудняет измерения.

Задачей, на решение которой направлено данное изобретение, является исключение влияния механического перемещения ОП на точность определения расстояния до объекта измерения.

Технический результат - повышение достоверности и точности определения расстояния до выбранного в качестве объекта измерения фрагмента нижней облачности, имеющего заранее неизвестные линейные размеры.

Указанный технический результат достигается тем, что для определения высоты нижней границы облачности выбирают в качестве объекта измерения фрагмент нижней границы облачности, получают два разномасштабных изображения выбранного объекта, определяют размеры изображения объекта измерения в плоскости изображения оптического прибора, после чего рассчитывают высоту НГО.

В отличие от известного, в предлагаемом способе разномасштабных изображения получают одновременно посредством двух идентичных оптико-электронных приборов (ОЭП), которые расположены так, чтобы их вертикальные линии визирования совпадали, а передние главные плоскости оптических систем были совмещены, причем оптические системы оптико-электронных приборов имеют отличные друг от друга фокусные расстояния и , высоту определяют по формуле:

где - размер изображения объекта измерения в плоскости изображения первого ОЭП,

- размер изображения объекта измерения в плоскости изображения второго ОЭП,

- фокусное расстояние ОС первого ОЭП,

- фокусное расстояние ОС второго ОЭП.

Общими признаками прототипа и заявляемого способа является получение двух разномасштабных изображений объекта с неизвестными заранее линейными размерами.

Сравнение заявляемого способа с прототипом позволило установить соответствие их условию "новизна". При сравнении заявляемого способа с другими известными техническими решениями не выявлены сходные признаки, что позволяет сделать вывод о соответствии условию "изобретательский уровень".

Способ поясняется чертежом.

Размер объекта y и расстояние a от объекта до совмещенных передних главных плоскостей Н оптических систем с фокусными расстояниями и являются величинами постоянными, а изображения объекта и , получаемые посредством данных оптических систем, будут отличаться друг от друга масштабом, причем чем дальше будет находиться объект у (т.е. чем больше значение а), тем меньше будет отличие в масштабе изображений объекта и .

Пример. Два идентичных ОЭП располагают таким образом, чтобы вертикальные линии визирования оптических систем, имеющих отличные друг от друга фокусные расстояния и , совпадали, а передние главные плоскости оптических систем были совмещены. Затем получают два разномасштабных изображения выбранного в качестве объекта измерения фрагмента нижней облачности.

Согласно [5] имеем (чертеж):

где β1 - линейное увеличение ОС первого ОЭП,

β2 - линейное увеличение ОС второго ОЭП,

y - линейный размер объекта измерения.

Кроме того, согласно [5] имеем следующие соотношения:

и

где а - расстояние от передних главных плоскостей оптических систем первого и второго ОЭП до выбранного фрагмента нижней облачности.

Учитывая (2) и (3), выражение (1) можно переписать в виде

откуда получаем, что расстояние от совмещенных передних главных плоскостей ОС оптико-электронных приборов до выбранною фрагмента нижней облачности можно определить по следующей формуле:

Таким образом, предлагаемый способ позволяет получать информацию о высоте НГО как о расстоянии до фрагмента нижней границы облачности, выбранного в качестве объекта измерения. Преимущество изобретения состоит в том, что точность измерения повышается за счет отсутствия в процессе измерения механических перемещений оптико-электронных приборов, в качестве которых можно использовать телевизионные камеры на матричных ПЗС приемниках, причем точность измерения будет тем больше, чем больше размерность используемых в телевизионных камерах матриц.

Источники информации

1. Авторское свидетельство СССР №598390, МПК G01C 3/06, G01S 9/62, на изобретение "Измеритель высоты нижней границы облаков".

2. Патент РФ №2136016, МПК G01S 17/95, G01W 1/00, на изобретение "Светолокационный измеритель высоты нижней границы облаков".

3. Рекламный каталог фирмы Vaisala, Финляндия, Ceilometr CL31.

4. Патент РФ №2095756, МПК G01C 3/32, на изобретение "Способ определения расстояния до объекта при помощи оптического прибора".

5. Прикладная оптика. Под ред. Заказнова Н.П. - М.: Машиностроение, 1988. - 312 с.

Моностатический способ определения высоты нижней границы облачности, по которому получают два разномасштабных изображения выбранного в качестве объекта измерения фрагмента нижней границы облачности, определяют размеры этих изображений, рассчитывают высоту нижней границы облачности, отличающийся тем, что измерения производят одновременно посредством двух идентичных оптико-электронных приборов, которые располагают так, чтобы их вертикальные линии визирования совпадали, а передние главные плоскости оптических систем были совмещены, при этом оптические системы оптико-электронных приборов имеют отличные друг от друга фокусные расстояния, высоту определяют по формуле ,где y' - размер изображения объекта измерения в плоскости изображения первого оптико-электронного прибора;y' - размер изображения объекта измерения в плоскости изображения второго оптико-электронного прибора;f'- фокусное расстояние оптической системы первого оптико-электронного прибора;f' - фокусное расстояние оптической системы второго оптико-электронного прибора.
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
20.08.2014
№216.012.e9a9

Способ определения балла облачности

Изобретение относится к области метеорологии и касается способа определения общего балла облачности. Для определения общего балла облачности получают цветное полутоновое изображение всего небосвода в видимой области спектра и для всех точек изображения проводят сравнение значений цветовых...
Тип: Изобретение
Номер охранного документа: 0002525625
Дата охранного документа: 20.08.2014
20.01.2018
№218.016.12f1

Фотонейтронный источник

Изобретение относится к фотонейтронным источникам. Фотонейтронный источник включает канал для ввода пучка электронов, облучаемый пучком электронов с энергией 6-8 МэВ, е-γ-конвертер из вольфрама толщиной 0,1 см, две фотонейтронные мишени из бериллия, полость для облучения образцов, замедлитель...
Тип: Изобретение
Номер охранного документа: 0002634330
Дата охранного документа: 26.10.2017
16.01.2019
№219.016.aff7

Способ измерения характеристик солнечного излучения многоэлементным датчиком

Изобретение относится к области метеорологии и касается способа измерения характеристик солнечного излучения. Способ основан на измерении максимальных и минимальных значений солнечной радиации с помощью датчика, имеющего как минимум два измерительных элемента, находящихся под маскирующим...
Тип: Изобретение
Номер охранного документа: 0002677075
Дата охранного документа: 15.01.2019
21.03.2019
№219.016.eac0

Способ измерения характеристик солнечного излучения

Изобретение относится к области актинометрии и касается способа измерения характеристик солнечного излучения. Способ основан на измерении максимальных и минимальных значений солнечной радиации с помощью датчика, который имеет как минимум два измерительных элемента и маскирующий элемент...
Тип: Изобретение
Номер охранного документа: 0002682590
Дата охранного документа: 19.03.2019
24.07.2020
№220.018.35e2

Способ определения рассеянной и прямой радиации при кучевой облачности

Изобретение относится к области актинометрии и может быть использовано для определения рассеянной и прямой радиации при кучевой облачности. Сущность: измерения проводят с помощью одного незатененного пиранометра. Значения рассеянной радиации измеряют в те моменты, когда Солнце полностью закрыто...
Тип: Изобретение
Номер охранного документа: 0002727328
Дата охранного документа: 21.07.2020
20.04.2023
№223.018.4cd2

Способ детектирования кучевой облачности

Изобретение относится к области метеорологии и может быть использовано для детектирования кучевой облачности. Сущность: измеряют суммарную радиацию незатененным пиранометром. Затем с помощью 21-минутного скользящего окна определяют точки, для которых коэффициент вариации превышает пороговое...
Тип: Изобретение
Номер охранного документа: 0002758343
Дата охранного документа: 28.10.2021
+ добавить свой РИД