×
05.07.2019
219.017.a597

Результат интеллектуальной деятельности: ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и аналоговой микроэлектроники. Технический результат заключается в создании токового порогового логического элемента, обеспечивающего циклический сдвиг троичной входной логической переменной (х), в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов. Технический результат достигается за счет токового порогового логического элемента прямого циклического сдвига, содержащего входные транзисторы, источники напряжения смещения, источники опорного тока, токовые зеркала, шины источника питания. 1 з.п. ф-лы, 1 табл., 5 ил.

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в различных цифровых структурах и системах автоматического управления, передачи цифровой информации. Техническим результатом является создание порогового логического элемента, обеспечивающего циклический сдвиг троичной входной логической переменной (x1), в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов, что позволяет повысить быстродействие устройств преобразования информации. Устройство содержит три токовых зеркала, три источника опорного тока, три источника напряжения смещения, шесть транзисторов.

В различных аналого-цифровых вычислительных и управляющих устройствах широко используются транзисторные каскады преобразования входных логических переменных (токов), реализованные на основе токовых зеркал [1-13]. Данные функциональные узлы используются, например, во входных каскадах операционных преобразователей сигналов с так называемой «токовой отрицательной обратной связью» [1-13], а также в качестве самостоятельных нелинейных преобразователей входных токов без цепей обратной связи [6], реализующих функцию логической обработки входных токовых переменных.

В работе [14], а также монографиях соавтора настоящей заявки [15-16] показано, что булева алгебра является частным случаем более общей линейной алгебры, практическая реализация которой в структуре вычислительных и логических устройств автоматики нового поколения требует создания специальной элементной базы, реализуемой на основе логики с многозначным внутренним представлением сигналов, в которой эквивалентом стандартного логического сигнала является квант тока. Заявляемое устройство относится к этому типу логических элементов.

Ближайшим прототипом заявляемого устройства является патент RU 2547225 («Многозначный логический элемент циклического сдвига», МПК H03K 19/082, 2015г.). Он содержит (фиг. 1) вход 1 и выход 2 устройства, первый 3 и второй 4 входные транзисторы с объединенными базами, которые подключены к первому 5 источнику напряжения смещения, третий 6 и четвертый 7 входные транзисторы другого типа проводимости с объединенными базами, которые подключены ко второму 8 источнику напряжения смещения, причем эмиттеры первого 3 и третьего 6 входных транзисторов объединены, эмиттеры второго 4 и четвертого 7 входных транзисторов связаны друг с другом, первый 9 источник опорного тока, первое 10 токовое зеркало, согласованное с первой 11 шиной источника питания, выход первого 10 токового зеркала подключен к объединённым эмиттерам второго 4 и четвертого 7 входных транзисторов, второе 12 токовое зеркало, согласованное с первой 11 шиной источника питания, третье 13 токовое зеркало, согласованное со второй 14 шиной источника питания, вход которого соединен со входом 1 устройства, причём первый 15 выход третьего 13 токового зеркала подключен к объединенным эмиттерам первого 3 и третьего 6 входных транзисторов и через второй 16 источник опорного тока связан с первой 11 шиной источника питания, второй 17 выход третьего 13 токового зеркала подключен к объединенным эмиттерам второго 4 и четвертого 7 входных транзисторов, коллекторы первого 3 и второго 4 входных транзисторов связаны со второй 14 шиной источника питания, выход второго 12 токового зеркала связан с выходом 2 устройства, коллектор четвертого 7 входного транзистора подключен ко входу второго 12 токового зеркала.

Существенный недостаток известного устройства фиг. 1 состоит в том, что он не реализует пороговую функцию прямого циклического сдвига троичной входной переменной (x1), соответствующей многоуровневым значениям входного тока Iin. Это не позволяет на его основе создать полный базис средств вычислительной техники, функционирующих на принципах преобразования многозначных токовых сигналов. В первую очередь это связано с тем, что известная схема имеет погрешности преобразования сигналов, происходящие на каждой операции, эти погрешности неизбежно суммируются в выходном сигнале и могут приводить к заметным общим отклонениям от уровней опорных сигналов. Применение пороговых функций и соответствующих им пороговых элементов, кроме реализации заданной логической функции, обеспечивает масштабирование и нормализацию уровней выходных сигналов и тем самым устраняет все погрешности сигналов, возникающие до порогового элемента.

Основная задача предлагаемого изобретения состоит в создании токового порогового логического элемента, обеспечивающего циклический сдвиг троичной входной логической переменной (x1), в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов. В конечном итоге это позволяет повысить быстродействие устройств преобразования информации и создать элементную базу вычислительных устройств, работающих на принципах многозначной линейной алгебры [15-16].

Поставленная задача достигается тем, что в схеме фиг.1, содержащей вход 1 и выход 2 устройства, первый 3 и второй 4 входные транзисторы с объединенными базами, которые подключены к первому 5 источнику напряжения смещения, третий 6 и четвертый 7 входные транзисторы другого типа проводимости с объединенными базами, которые подключены ко второму 8 источнику напряжения смещения, причем эмиттеры первого 3 и третьего 6 входных транзисторов объединены, эмиттеры второго 4 и четвертого 7 входных транзисторов связаны друг с другом, первый 9 источник опорного тока, первое 10 токовое зеркало, согласованное с первой 11 шиной источника питания, выход первого 10 токового зеркала подключен к объединённым эмиттерам второго 4 и четвертого 7 входных транзисторов, второе 12 токовое зеркало, согласованное с первой 11 шиной источника питания, третье 13 токовое зеркало, согласованное со второй 14 шиной источника питания, вход которого соединен со входом 1 устройства, причём первый 15 выход третьего 13 токового зеркала подключен к объединенным эмиттерам первого 3 и третьего 6 входных транзисторов и через второй 16 источник опорного тока связан с первой 11 шиной источника питания, второй 17 выход третьего 13 токового зеркала подключен к объединенным эмиттерам второго 4 и четвертого 7 входных транзисторов, коллекторы первого 3 и второго 4 входных транзисторов связаны со второй 14 шиной источника питания, выход второго 12 токового зеркала связан с выходом 2 устройства, коллектор четвертого 7 входного транзистора подключен ко входу второго 12 токового зеркала, предусмотрены новые элементы и связи – в схему введены дополнительный 18 источник опорного тока, первый 19 и второй 20 дополнительные транзисторы, дополнительный 21 источник напряжения смещения, причём коллектор третьего 6 входного транзистора подключен к первой 11 шине источника питания, дополнительный 18 источник опорного тока включен между входом третьего 13 токового зеркала и первой 11 шиной источника питания, объединённые эмиттеры первого 19 и второго 20 дополнительных транзисторов связаны со второй 14 шиной источника питания через первый 9 источник опорного тока, коллектор первого 19 дополнительного транзистора связан с первой 11 шиной источника питания, коллектор второго 20 дополнительного транзистора связан с входом первого 10 токового зеркала, база первого 19 дополнительного транзистора связана с объединёнными эмиттерами первого 3 и третьего 6 входных транзисторов, база второго 20 дополнительного транзистора подключена к дополнительному 21 источнику напряжения смещения.

На чертеже фиг. 1 показана схема прототипа, а на чертеже фиг. 2 –схема заявляемого токового порогового логического элемента прямого циклического сдвига на биполярных транзисторах в соответствии с п.1 формулы изобретения.

На чертеже фиг. 3 представлена схема заявляемого токового порогового логического элемента прямого циклического сдвига на полевых транзисторах в соответствии с п. 2 формулы изобретения.

На чертеже фиг. 4 показана схема заявляемого устройства фиг. 3 в среде компьютерного моделирования Cadence на моделях полевых транзисторов XB06.

На чертеже фиг. 5 приведены осциллограммы входных и выходных сигналов схемы заявляемого токового порогового логического элемента прямого циклического сдвига фиг. 4.

Токовый пороговый логический элемент прямого циклического сдвига фиг.2 содержит вход 1 и выход 2 устройства, первый 3 и второй 4 входные транзисторы с объединенными базами, которые подключены к первому 5 источнику напряжения смещения, третий 6 и четвертый 7 входные транзисторы другого типа проводимости с объединенными базами, которые подключены ко второму 8 источнику напряжения смещения, причем эмиттеры первого 3 и третьего 6 входных транзисторов объединены, эмиттеры второго 4 и четвертого 7 входных транзисторов связаны друг с другом, первый 9 источник опорного тока, первое 10 токовое зеркало, согласованное с первой 11 шиной источника питания, выход первого 10 токового зеркала подключен к объединённым эмиттерам второго 4 и четвертого 7 входных транзисторов, второе 12 токовое зеркало, согласованное с первой 11 шиной источника питания, третье 13 токовое зеркало, согласованное со второй 14 шиной источника питания, вход которого соединен со входом 1 устройства, причём первый 15 выход третьего 13 токового зеркала подключен к объединенным эмиттерам первого 3 и третьего 6 входных транзисторов и через второй 16 источник опорного тока связан с первой 11 шиной источника питания, второй 17 выход третьего 13 токового зеркала подключен к объединенным эмиттерам второго 4 и четвертого 7 входных транзисторов, коллекторы первого 3 и второго 4 входных транзисторов связаны со второй 14 шиной источника питания, выход второго 12 токового зеркала связан с выходом 2 устройства, коллектор четвертого 7 входного транзистора подключен ко входу второго 12 токового зеркала. В схему введены дополнительный 18 источник опорного тока, первый 19 и второй 20 дополнительные транзисторы, дополнительный 21 источник напряжения смещения, причём коллектор третьего 6 входного транзистора подключен к первой 11 шине источника питания, дополнительный 18 источник опорного тока включен между входом третьего 13 токового зеркала и первой 11 шиной источника питания, объединённые эмиттеры первого 19 и второго 20 дополнительных транзисторов связаны со второй 14 шиной источника питания через первый 9 источник опорного тока, коллектор первого 19 дополнительного транзистора связан с первой 11 шиной источника питания, коллектор второго 20 дополнительного транзистора связан с входом первого 10 токового зеркала, база первого 19 дополнительного транзистора связана с объединёнными эмиттерами первого 3 и третьего 6 входных транзисторов, база второго 20 дополнительного транзистора подключена к дополнительному 21 источнику напряжения смещения.

Кроме этого, на чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, в качестве первого 3, второго 4, третьего 6 и четвертого 7 входных транзисторов, а также первого 19 и второго 20 дополнительных транзисторов используются полевые транзисторы, причём исток каждого из полевых транзисторов соответствует эмиттеру, затвор – базе, а сток – коллектору биполярного транзистора [17].

Рассмотрим работу токового порогового логического элемента прямого циклического сдвига, представленного на чертеже фиг. 2, который выполняет операцию циклического сдвига с применением порогового элемента. Операции преобразования сигналов могут быть записаны в виде:

y=x+1-3((x+1)>2,5). (1)

Этому выражению соответствует следующая таблица истинности:

x 0 1 2
y 1 2 0

Входная переменная «x» в виде кванта втекающего тока поступает на вход 1 устройства и далее – на вход третьего 13 токового зеркала, где с ней суммируется квант втекающего тока дополнительного 18 источника опорного тока, т.е. реализуется суммирование входной переменной с единицей.

Слагаемое 3((x+1)>2,5) реализуется следующим образом.

Из кванта вытекающего тока с первого 15 выхода третьего 13 токового зеркала вычитается 2,5 кванта втекающего тока второго 16 источника опорного тока. Разностный ток поступает на объединенные эмиттеры первого 3 и третьего 6 входных транзисторов, а также в базу первого 19 дополнительного транзистора. Режимы работы первого 3 и третьего 6 входных транзисторов задаются значениями напряжений первого 5 и второго 8 источников напряжения смещения и обеспечивают предотвращение насыщения транзисторов второго 16 источника опорного тока. Первый 19 и второй 20 дополнительные транзисторы образуют дифференциальный каскад (ДК), переключение коллекторных токов этих транзисторов определяется сигналом, поступающим на базу первого 19 дополнительного транзистора. ДК в данном случае выполняет функции порогового элемента, выполняя сравнение переменной x+1 c пороговым уровнем 2,5. Выбор такого порогового уровня обеспечивает независимость результатов преобразования сигналов от погрешностей преобразования в пределах 0,5 кванта тока I0. Разностный сигнал первого 15 выхода третьего 13 токового зеркала и второго 16 источника опорного тока передаётся в базу первого 19 дополнительного транзистора и управляет переключением утроенного вытекающего тока первого 9 источника опорного тока в ДК. При положительной разности сигналов x-2,5 ток первого 9 источника опорного тока через коллектор второго 20 дополнительного транзистора в виде утроенного кванта тока подается на первое 10 токовое зеркало, где преобразуется в равный ему втекающий ток.

Реализация алгебраического суммирования слагаемых в соответствии с приведенным выше выражением производится монтажным объединением вытекающего тока со второго 17 выхода третьего 13 токового зеркала и втекающего тока с выхода первого 10 токового зеркала. Разностный ток поступает на объединенные эмиттеры второго 4 и четвертого 7 входных транзисторов. Режимы работы этих транзисторов задаются значениями напряжений первого 5 и второго 8 источников напряжения смещения и обеспечивают предотвращение насыщения транзисторов второго 12 токового зеркала. Разностный сигнал с коллектора четвертого 7 входного транзистора в виде сигнала вытекающего тока подается на второе 12 токовое зеркало, где преобразуется в равный ему сигнал втекающего тока и подается на выход 2 устройства.

В схеме на фиг. 3 двухполюсник 22 служит для обнаружения наличия кванта тока в выходной цепи в процессе экспериментальных исследований.

Показанные на фиг. 5 результаты моделирования подтверждают указанные свойства заявляемой схемы.

Таким образом, рассмотренное схемотехническое решение порогового логического элемента циклического сдвига входной троичной логической переменной (x1) характеризуется многозначным состоянием внутренних сигналов и сигналов на его токовых входах и выходах, что может быть положено в основу вычислительных и управляющих устройств, использующих многозначную линейную алгебру, частным случаем которой является булева алгебра.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент RU 2547225, 2015 г.

2. Патент US 8.159.304, fig. 5, 2012 г.

3. Патент US 5.977.829, fig.1, 1999 г.

4. Патент US 5.789.982, fig.2, 1998 г.

5. Патент US 5.140.282, 1992 г.

6. Патент US 6.624.701, fig.4, 2003 г.

7. Патент US 6.529.078, 2003 г.

8. Патент US 5.734.294, 1998 г.

9. Патент US 5.557.220, 1996 г.

10. Патент RU 2319296, 2008 г.

11. Патент RU 2436224, 2011 г.

12. Патент RU 2321157, 2008 г.

13. Патент RU 2383099, 2010 г.

14. Малюгин В.Д. Реализация булевых функций арифметическими полиномами // Автоматика и телемеханика, 1982. №4. С. 84-93.

15. Чернов Н.И. Основы теории логического синтеза цифровых структур над полем вещественных чисел // Монография. - Таганрог: ТРТУ, 2001. - 147 с.

16. Чернов Н.И. Линейный синтез цифровых структур АСОИУ» // Учебное пособие. Таганрог: ТРТУ, 2004 г., 118 с.

17. Хоровиц П., Хилл У. Искусство схемотехники: Пер. с англ. - Изд. 2-е. - М.: Издательство БИНОМ 2014. - с. 126.


ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА
ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА
ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА
ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА
ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА
ТОКОВЫЙ ПОРОГОВЫЙ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ПРЯМОГО ЦИКЛИЧЕСКОГО СДВИГА
Источник поступления информации: Роспатент

Показаны записи 171-180 из 216.
16.01.2020
№220.017.f5d1

Составной транзистор на основе комплементарных полевых транзисторов с управляющим p-n переходом

Изобретение относится к области микроэлектроники. Технический результат: создание составного транзистора на комплементарных транзисторах, который по своим стоко-затворным характеристикам подобен КМОП полевому транзистору, т.е. имеет характерную зону закрытого состояния при напряжении...
Тип: Изобретение
Номер охранного документа: 0002710846
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f5f1

Дифференциальный усилитель на комплементарных полевых транзисторах с повышенной стабильностью статического режима

Изобретение относится к радиотехнике и связи. Технический результат заключается в создании условий, при которых в заявляемом дифференциальном усилителе (ДУ) обеспечивается более высокая стабильность статического режима при отрицательных температурах, а также повышение коэффициента ослабления...
Тип: Изобретение
Номер охранного документа: 0002710930
Дата охранного документа: 14.01.2020
21.01.2020
№220.017.f7a1

Источник опорного тока для задач стабилизации статического режима операционных усилителей при низких температурах

Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах и аналого-цифровых интерфейсах датчиков, работающих в тяжелых условиях эксплуатации (низкие температуры, проникающая радиация). Технический результат: повышение стабильности...
Тип: Изобретение
Номер охранного документа: 0002711350
Дата охранного документа: 16.01.2020
24.01.2020
№220.017.f97c

Быстродействующий выходной каскад аналоговых микросхем на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных усилителей и выходных каскадов. Технический результат заключается в обеспечении при высокой линейности амплитудной характеристики повышенной стабильности статического режима...
Тип: Изобретение
Номер охранного документа: 0002711725
Дата охранного документа: 21.01.2020
31.01.2020
№220.017.fb65

Входной дифференциальный каскад на комплементарных полевых транзисторах для работы при низких температурах

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в обеспечении более высокой стабильности статического режима при отрицательных температурах (до -197°С) и изменении напряжений...
Тип: Изобретение
Номер охранного документа: 0002712416
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fb71

Дифференциальный каскад на комплементарных полевых транзисторах с управляющим p-n переходом класса ав с изменяемым напряжением ограничения проходной характеристики

Изобретение относится к области радиотехники. Технический результат заключается в создании условий, при которых обеспечивается возможность изменения напряжения ограничения проходной характеристики U в зависимости от заданных значений SR при фиксированном токопотреблении. Дифференциальный каскад...
Тип: Изобретение
Номер охранного документа: 0002712414
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fba4

Токовый пороговый логический элемент "равнозначность"

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат заключается в повышении быстродействия устройств преобразования информации....
Тип: Изобретение
Номер охранного документа: 0002712412
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fba7

Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя (БУ) на комплементарных полевых транзисторах, обеспечивающего малые значения напряжения смещения нуля....
Тип: Изобретение
Номер охранного документа: 0002712410
Дата охранного документа: 28.01.2020
31.01.2020
№220.017.fbbc

Промежуточный каскад cjfet операционного усилителя с парафазным токовым выходом

Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах (АМ) и аналого-цифровых интерфейсах датчиков. Технический результат заключается в повышении крутизны преобразования входного дифференциального напряжения в токи первого и второго...
Тип: Изобретение
Номер охранного документа: 0002712411
Дата охранного документа: 28.01.2020
05.03.2020
№220.018.08e4

Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля

Предлагаемое изобретение относится к области автоматики и управления (G05), вычислительной (G06) и измерительной (G01) техники и может быть реализовано в виде новой последовательности и структуры операций преобразования сигналов датчиков различных физических величин, предназначенных для работы...
Тип: Изобретение
Номер охранного документа: 0002715835
Дата охранного документа: 03.03.2020
+ добавить свой РИД