×
05.07.2019
219.017.a571

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НЕЙТРОНОПОГЛОЩАЮЩЕГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ, СОДЕРЖАЩЕГО СЛОИ С КАРБИДОМ БОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к получению слоистого материала на основе алюминия и его сплавов, содержащего слои с карбидом бора, и может использоваться в качестве конструкционных материалов для авиации и в атомной промышленности, которые сочетают низкую удельную массу с эффективным поглощением нейтронного излучения. Способ получения нейтронопоглощающего материала на основе алюминия, содержащего слои с карбидом бора, включает получение расплава алюминия с температурой выше температуры ликвидус, содержащий 28-35 об. % частиц карбида бора с размером зерна 1-60 мкм, при этом получают расплав алюминия без частиц карбида бора с температурой на 100-150°С выше температуры ликвидус, заливают его в подогреваемую горизонтальную изложницу центробежного литья, вращающуюся с коэффициентом гравитации 70-140, с формированием первого слоя металла на поверхности изложницы, затем заливают в изложницу расплав защитного флюса и формируют следующие слои металла, последовательно заливая на расплав флюса расплав алюминия, содержащего частицы карбида бора, затем расплав алюминия без частиц бора, затем расплав алюминия, содержащего частицы карбида бора, и затем расплав алюминия без частиц бора, причем заливку расплава последующих слоев металла на расплав флюса начинают после охлаждения предыдущего слоя металла до температуры солидус. Техническим результатом изобретения является получение крупных полых цилиндрических заготовок нейтронопоглощающего материала на основе алюминия, содержащего слои металла с карбидом бора, равномерно распределенным по их толщине. 3 з.п. ф-лы,

Изобретение относится к металлургии, а именно к получению слоистого материала на основе алюминия и его сплавов, содержащего слои с карбидом бора, и может использоваться в качестве конструкционных материалов для авиации и в атомной промышленности, которые сочетают низкую удельную массу с эффективным поглощением нейтронного излучения.

Известен способ получения нейтронно-поглощающего алюминиевого композитного материала, содержащего 1,5-9 мас. % карбида бора в виде частиц со средним размером 1-60 мкм, равномерно распределенных в алюминиевой матрице, включающий получение смеси порошка карбида бора и порошка алюминия или его сплавов, вакуумную дегазацию и спекание под давлением в плоскую пластину с использованием горячей экструзии, горячей прокатки, горячего прессования или их комбинаций.

(US 6602314, С22С 21/00, С22С 32/00, опубликовано 05.08.2003)

Недостатком известного способа является трудность получения крупных заготовок, предназначенных для прокатки, в том числе получение слоистого материала, позволяющего повысить содержание бора в изделии.

Известен способ получения тонколистового композитного проката из слитков борсодержащего алюминиевого сплава, включающий приготовление алюминиевого расплава, содержащего медь, введение бора в количестве от 2 до 2,8 мас. % в виде боридных частиц, получение слитка путем кристаллизации расплава, горячую прокатку, промежуточный отжиг, холодную прокатку, причем в алюминиевый расплав вводят от 1,8 до 2,5 мас. % меди и от 1,4 до 2,2 мас. % марганца, слиток подвергают горячей прокатке при температуре от 400 до 450°С, а после холодной прокатки проводят отжиг при температуре от 360 до 400°С.

(RU 2630185, C22F 1/04; С22С 21/12, опубликовано 05.09.2017)

Недостатком известного способа является низкая концентрация борсодержащих частиц в алюминиевой матрице.

Наиболее близким является способ получения нейтронно-поглощающего материала на основе алюминия, содержащего слои с различной концентрацией карбида бора, включающий изготовление плоского композита из алюминиевого сплава с кремнием и частицами карбида бора с размером зерен 10-30 мкм в концентрации 10-55 мас. %, нагрев композита выше температуры ликвидус, выдержку расплава в защитной атмосфере при давлении газа 1100-1300 бар и воздействии вибрации, охлаждение, закалку и многократную горячую прокатку, или ковку, или экструзию. При воздействии вибрации в расплаве происходит всплывание частиц карбида бора и обогащение им до 65-85 мас. % верхнего слоя расплава с формированием слоев с различным содержанием карбида бора.

(DE 102011120988, С22С 21/02, опубликовано 13.06.2013)

Недостатком известного способа является невозможность его использования для получения нейтронно-поглощающего материала в виде крупных полых цилиндрических заготовок, а также невозможность получения нескольких слоев с равномерным распределением карбида бора по их сечению.

Задачей и техническим результатом изобретения является получение крупных полых цилиндрических заготовок нейтронно-поглощающего материала на основе алюминия, содержащего слои металла с карбидом бора, равномерно распределенным по их толщине.

Технический результат достигают тем, что способ получения нейтронно-поглощающего материала на основе алюминия, содержащего слои с карбидом бора, включает получение расплава алюминия с температурой выше температуры ликвидус, содержащий 28-35 об. % частиц карбида бора с размером зерна 1-60 мкм, при этом получают расплав алюминия без частиц карбида бора с температурой на 100-150°С выше температуры ликвидус, заливают его в подогреваемую горизонтальную изложницу центробежного литья, вращающуюся с коэффициентом гравитации 70-140, с формированием первого слоя металла на поверхности изложницы, затем заливают в изложницу расплав защитного флюса, и формируют следующие слои металла, последовательно заливая на расплав флюса расплав алюминия, содержащего частицы карбида бора, затем расплав алюминия без частиц бора, затем расплав алюминия, содержащего частицы карбида бора, и затем расплав алюминия без частиц бора, причем заливку расплава последующих слоев металла на расплав флюса начинают после охлаждения предыдущего слоя металла до температуры солидус.

Технический результат также достигают тем, что заливку расплава ведут в защитной атмосфере аргона, который подают в изложницу с расходом 0,3-0,7 м3/ч; в качестве расплава алюминия используют расплавы технического алюминия, а также его литейные сплавы с кремнием.

Достижение поставленного технического результата можно проиллюстрировать следующим примером.

Известными способами получают расплав литейного сплава алюминия с кремнием с температурой 850-900°С (на 100-150°С выше температуры ликвидус) и расплав технического алюминия с температурой 900°С (на 200°С выше температуры ликвидус), содержащий 28-35 об. % частиц карбида бора с размером зерна 1-60 мкм.

Оптимальным является получения расплава алюминия с добавкой карбида бора непосредственно перед введением в изложницу путем расплавления предварительно полученного методом порошковой металлургии полуфабриката.

При осуществлении способа по изобретению используют известные составы флюсов для защиты зеркала расплава алюминия, например, на основе фторида кальция.

Рабочую поверхность используемой подогреваемой до температуры более 200°С горизонтальной изложницы центробежного литья длиной 3 м и внутренним диаметром 300 мм предварительно покрывают противопригарным покрытием.

Первый слой нейтронно-поглощающего материала по изобретению толщиной 3,0 мм формируют путем заливки во вращающуюся горизонтальную изложницу расплава литейного алюминиевого сплава без частиц карбида бора с температурой 850°С, что на 100°С выше температуры ликвидус. Заливку расплавов металла ведут в защитной атмосфере аргона, который подают в изложницу с расходом 0,3-0,7 м3/ч.

Число оборотов изложницы n определяют по известной формуле:

где: n - число оборотов в сек;

K - коэффициент гравитации;

D - диаметр изложницы, м /

Для K=100 и D=0,1 м число оборотов изложницы n=22,3 об/с.

После заливки первого слоя металла, в изложницу заливают расплав защитного флюса, который формирует на поверхности первого слоя металла равномерный защитный слой толщиной ≈3 мм.

После охлаждения металла первого слоя до температуры солидус (≈750…°С) в изложницу на расплавленный флюс заливают подготовленный расплав алюминия, содержащий частицы карбида бора, для формирования второго нейтронно-поглощающего слоя металла толщиной 3 мм.

После формирования слоя защитного флюса на поверхности второго слоя металла и охлаждения металла до температуры солидус в изложницу заливают расплав сплава алюминия без частиц бора, а затем последовательно после формирования слоя защитного флюса на поверхности сформированного слоя металла и его охлаждения до температуры солидус заливают расплав алюминия, содержащего частицы карбида бора, и расплав алюминиевого сплава без частиц бора.

Выбранные температурные режимы осуществления способа по изобретению в сочетании с режимом вращения изложницы обеспечивают формирование слоев металла одинаковой толщины, их направленную кристаллизацию и равномерное распределение карбида бора по сечению слоя металла и длине изложницы.

Результатом осуществления способа по изобретению был получен нейтронно-поглощающего материала на основе алюминия в виде крупной полой цилиндрической заготовки, содержащей слои с карбидом бора.

Для получения листов полученную заготовку разрезают по средней линии, разгибают, выпрямляют и прокатывают на лист необходимой толщины. Полученный лист можно использовать в конструкциях защиты от нейтронного излучения.

Источник поступления информации: Роспатент

Показаны записи 21-24 из 24.
16.11.2019
№219.017.e330

Радиационно-стойкий чугун с шаровидным графитом для литья контейнеров хранения и транспортировки отработавшего ядерного топлива

Изобретение относится к металлургии, а именно к разработке радиационно-стойкого аустенитного чугуна с шаровидным графитом, и может быть использовано для изготовления крупногабаритных отливок контейнеров хранения и транспортировки отработавшего ядерного топлива. Радиационно-стойкий чугун с...
Тип: Изобретение
Номер охранного документа: 0002706136
Дата охранного документа: 15.11.2019
15.01.2020
№220.017.f4fa

Износостойкая метастабильная аустенитная сталь

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, и может найти применение для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего...
Тип: Изобретение
Номер охранного документа: 0002710760
Дата охранного документа: 13.01.2020
15.02.2020
№220.018.0278

Контейнер для транспортирования и хранения отработавших тепловыделяющих сборок реактора типа ввэр

Изобретение относится к конструкциям контейнеров из высокопрочного чугуна с шаровидным графитом для транспортирования и хранения отработавших тепловыделяющих сборок реактора типа ВВЭР-1000/1200. Контейнер для транспортирования и хранения отработавших тепловыделяющих сборок реактора типа ВВЭР...
Тип: Изобретение
Номер охранного документа: 0002714122
Дата охранного документа: 12.02.2020
06.03.2020
№220.018.09c3

Высокопрочный хладостойкий чугун с шаровидным графитом

Изобретение относится к области металлургии, в частности к составам высокопрочного хладостойкого чугуна с шаровидным графитом для производства трубчатых свай, эксплуатирующихся в любых климатических условиях, преимущественно в районах Арктики и Крайнего Севера. Высокопрочный хладостойкий чугун...
Тип: Изобретение
Номер охранного документа: 0002715931
Дата охранного документа: 04.03.2020
Показаны записи 91-99 из 99.
12.08.2019
№219.017.be65

Коррозионно-стойкая высокопрочная немагнитная сталь

Изобретение относится к области металлургии, а именно коррозионно-стойким высокопрочным немагнитным сталям, используемым в судостроительной, химической, газонефтедобывающей, электротехнической, геодезической, медицинской и других областях промышленности. Сталь содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002696792
Дата охранного документа: 06.08.2019
02.10.2019
№219.017.cdc2

Аустенитно-ферритная нержавеющая сталь

Изобретение относится к области металлургии, а именно к коррозионно-стойким сталям аустенитно-ферритного класса, и может быть использовано в металлургической, нефтеперерабатывающей и газовой промышленности, в энергетическом машиностроении при производстве теплообменного оборудования АЭС, в...
Тип: Изобретение
Номер охранного документа: 0002700440
Дата охранного документа: 17.09.2019
15.01.2020
№220.017.f4fa

Износостойкая метастабильная аустенитная сталь

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, и может найти применение для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего...
Тип: Изобретение
Номер охранного документа: 0002710760
Дата охранного документа: 13.01.2020
17.02.2020
№220.018.0387

Способ производства бесшовных труб большого диаметра из конструкционных сталей

Изобретение относится к трубопрокатному производству. В литейной центробежной машине получают крупногабаритную толстостенную полую заготовку, отношение наружного диаметра к толщине стенки которой составляет 4,0-10, с плотной структурой, обусловленной направленной кристаллизацией металла. После...
Тип: Изобретение
Номер охранного документа: 0002714355
Дата охранного документа: 14.02.2020
24.07.2020
№220.018.361a

Способ однонаправленного и ускоренного затвердевания крупногабаритных толстостенных центробежно-литых стальных заготовок

Изобретение относится к области литейного производства, в частности, к центробежному литью и может быть использовано в тяжелой, энергетической, нефтехимической, металлургической и в других отраслях машиностроения для производства крупногабаритных изделий ответственного назначения. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002727369
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.481f

Хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким сталям, используемым при производстве, сосудов высокого давления, применяемых для хранения и перевозки сжатых газов в широком диапазоне температур, в том числе эксплуатируемых при пониженных (до -60°С)...
Тип: Изобретение
Номер охранного документа: 0002746598
Дата охранного документа: 16.04.2021
16.05.2023
№223.018.61ac

Экономнолегированная хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким сталям, и может быть использовано при производстве сосудов высокого давления, применяемых для хранения и перевозки сжатых газов в широком диапазоне температур, в том числе эксплуатируемых при температуре...
Тип: Изобретение
Номер охранного документа: 0002746599
Дата охранного документа: 16.04.2021
21.05.2023
№223.018.69aa

Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования

Изобретение относится к способам испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в создании ударного воздействия в виде нестационарной...
Тип: Изобретение
Номер охранного документа: 0002794872
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.69ab

Способ испытаний на высокоинтенсивные ударные воздействия приборов и оборудования

Изобретение относится к способам испытаний на высокоинтенсивные ударные воздействия приборов и оборудования, может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в создании ударного воздействия в виде нестационарной...
Тип: Изобретение
Номер охранного документа: 0002794872
Дата охранного документа: 25.04.2023
+ добавить свой РИД