×
29.06.2019
219.017.a1b1

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГЕНЕРАТОРА

Вид РИД

Изобретение

№ охранного документа
0002461095
Дата охранного документа
10.09.2012
Аннотация: Изобретение относится к технолгии изготовления термоэлектрических полупроводниковых преобразователей и батарей. Сущность: собранные линейки или блоки термоэлектрического генератора (ТЭГ) подвергают воздействию переменного или импульсного знакопеременного напряжения величиной от 100 В до 10000 В путем приложения его к контактным пластинам, расположенным с разных сторон полупроводникового элемента, с помощью электродов. Максимальный размер электродов в поперечном сечении не более 0,5 от толщины контактной пластины. Электроды находятся в электрическом контакте с пластинами или на расстоянии от них, менее пробойного для среды при данном напряжении. Точкой приложения напряжения сканируют по поверхности блока ТЭГ так, чтобы каждый полупроводниковый элемент был подвергнут обработке не менее одного раза при каждой полярности напряжения. Технический результат: уменьшение внутреннего сопротивления ТЭГ. 1 ил.

Изобретение относится к технологии изготовления термоэлектрических полупроводниковых преобразователей и батарей из них.

Широко известны и распространены термоэлектрические генераторы (ТЭГ) на преобразователях Пельтье, выполненные в виде батареи расположенных друг рядом с другом полупроводниковых пластин (столбиков, шестигранников и т.п.) р- и n-типа проводимости, боковые поверхности которых электрически изолированы друг от друга, а торцы соединены попарно металлическими контактными пластинами так, чтобы образовать последовательное электрическое соединение чередующихся элементов р- и n-типа проводимости. При этом четные и нечетные по порядку пластины оказываются на разных сторонах батареи. При создании разности температур между двумя сторонами батареи (между «холодными» и «горячими» контактными пластинами) возникает разность потенциалов между крайними контактными пластинами, пропорциональная в некотором температурном интервале разности температур [Петр Шостаковский. Современные решения термоэлектрического охлаждения. Компоненты и технологии, №12, 2009; пат. US №5409547]. Изготавливают полупроводниковые пластины часто прессованием и, для исключения изменения свойств приповерхностной области пластины при припаивании контактных пластин и при дальнейшей эксплуатации, на торцы их предварительно наносят антидиффузионный материал [пат. RU №2248070]. Батареи обычно содержат значительное число последовательно соединенных полупроводниковых элементов. Соответственно этому велико и число контактных пластин, а также слоев припоя и переходных слоев от полупроводникового материала к антидиффузионному, от антидиффузионного к припою, от припоя к металлическому контакту. Даже незначительное сопротивление в области контактов приводит поэтому к большому суммарному их сопротивлению, к увеличению внутреннего сопротивления термоэлектрической батареи и в результате к уменьшению ее КПД.

Известен способ уменьшения сопротивления областей контакта, заключающийся в том, что контакт осуществляют диффузионной сваркой [Ajay Singh, S.Bhattacharya, R.Basu, D.K.Aswal, S.K.Gupta. Полученные диффузионной сваркой низкоомные электрические контакты для термоэлектрических устройств на основе n-PbTe и p-TAGS-85. XIV Международный форум по термоэлектричеству]. Недостатком этого способа является существенный локальный перегрев области контакта с расплавлением многокомпонентного материала и его перераспределением, отрицательно влияющим на приповерхностные свойства полупроводникового элемента и на стабильность генератора.

Известны также многочисленные способы (и устройства для их осуществления) обработки различных материалов и изделий воздействием высокого напряжения с различными целями [патенты США 4334144, 4879100, 5466423, 5895558, 6396212, заявка US 2009/0163107 A1, US 2010/0292757 A1]. Они оказывают лишь поверхностное воздействие на объект (модификация, очистка, нанесение материала и т.п.).

Задачей предлагаемого изобретения является уменьшение внутреннего сопротивления термоэлектрического генератора.

Технический результат достигается тем, что уже собранные линейки (или блоки) термоэлектрического генератора подвергают воздействию переменного или импульсного, в т.ч. импульсного знакопеременного, напряжения величиной от 100 В до 10000 В путем приложения его к контактным пластинам, расположенным с разных сторон полупроводникового элемента, с помощью электродов с максимальным размером в поперечном сечении не более 0,5 от толщины контактной пластины, находящихся в электрическом контакте с контактными пластинами или на расстоянии от них менее пробойного для прикладываемого напряжения в данной среде, например в воздухе при атмосферном давлении или в диэлектрической жидкости (керосин и др.), причем точкой приложения напряжения сканируют по поверхности блока ТЭГ так, чтобы каждый полупроводниковый элемент был подвергнут описанной обработке не менее одного раза при каждой полярности напряжения.

Способ основан на экспериментально установленном заявителем факте уменьшения внутреннего сопротивления ТЭГ при кратковременном приложении между «горячими» и «холодными» контактными пластинами напряжения до 10 кВ. Физические причины для этого могут быть разные. Наиболее вероятная - это уменьшение сопротивления переходного слоя между полупроводниковым элементом и контактной пластиной в результате разрушения паразитных диэлектрических тонких слоев окислов (металла, припоя, антидиффузионного материала, частиц керамического полупроводникового элемента) высоковольтным проколом (точечным нарушением изолирующих свойств).

Точечный характер воздействия, обеспечиваемый малыми поперечными размерами (остротой) электродов, позволяет увеличить проводимость между контактными пластинами и полупроводниковыми элементами в большем числе точек, чем при электрическом воздействии на всю площадь контактной пластины (или всего блока) сразу, когда ток практически весь уходит через один «прокол», не создавая новых областей высокой проводимости. Локальность в пределах одной контактной пластины обеспечивается падением напряжения в ней при протекании тока в удаленную от электрода область пластины (растекание), поэтому эффективность предлагаемого способа тем выше, чем тоньше контактная пластина (минимальная ее толщина ограничивается требованиями к величине внутреннего сопротивления ТЭГ, поэтому для каждого конкретного случая она должна подбираться специально).

При использовании импульсного знакопостоянного напряжения обработку повторяют, изменив полярность на противоположную.

При использовании переменного высоковольтного напряжения процедура проще, так как не надо менять полярности, и проще оборудование (например, высоковольтный трансформатор).

На фиг.1 изображена схема примера осуществления способа. Цифрами обозначены: 1 - блок ТЭГ, 2 - электроды, 3 - источник импульсного знакопеременного высокого напряжения. Стрелками обозначены перемещения блока ТЭГ при сканировании в его плоскости (вдоль осей х и у).

Примером конкретного исполнения может служить обработка по предлагаемому способу блока ТЭГ, выполненного из последовательно попеременно соединенных полупроводниковых прессованных брикетов р-типа (Bi, Те, Sb) и n-типа (Bi, Те, Se) - всего 12 последовательно соединенных модулей по 154 пары брикетов в каждом, - соединенных с помощью контактных пластин толщиной 1 мм с антидиффузинонным слоем толщиной 5 мкм из никеля. Электроды, выполненные из остро заточенных (радиус острия не превышает 0,2 мм) под углом 30° графитовых стержней диаметром 2 мм, располагают вплотную или практически вплотную к контактным пластинам (на расстоянии не более 0,1 мм от них). Знакопеременные импульсы напряжения амплитудой 5000 вольт и длительностью 0,1 мс подают на электроды с частотой 100 Гц. Шаг сканирования по двум взаимно перпендикулярным осям по поверхности ТЭГ составляет 2 мм.

Способ изготовления термоэлектрического генератора, заключающийся, кроме прочего, в том, что соседние полупроводниковые элементы n- и р-типов проводимости соединяют через антидиффузионные слои последовательно между собой контактными пластинами, отличающийся тем, что уже собранные линейки (или блоки) термоэлектрического генератора (ТЭГ) подвергают воздействию переменного или импульсного знакопеременного напряжения величиной от 100 В до 10000 В путем приложения его к контактным пластинам, расположенным с разных сторон полупроводникового элемента, с помощью электродов с максимальным размером в поперечном сечении не более 0,5 от толщины контактной пластины, находящихся в электрическом контакте с пластинами или на расстоянии от них, менее пробойного для среды при данном напряжении, причем точкой приложения напряжения сканируют по поверхности блока ТЭГ так, чтобы каждый полупроводниковый элемент был подвергнут описанной обработке не менее одного раза при каждой полярности напряжения.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
20.02.2013
№216.012.2882

Термоэлектрический генератор

Изобретение относится к области преобразования тепловой энергии в электрическую. Сущность: термоэлектрический генератор содержит термоэлектрический преобразователь (ТЭП), нагреватель «горячих» контактов ТЭП и систему воздушного охлаждения «холодных» контактов ТЭП. восходящий канал отвода...
Тип: Изобретение
Номер охранного документа: 0002475890
Дата охранного документа: 20.02.2013
Показаны записи 11-20 из 29.
20.09.2015
№216.013.7b23

Оптический модулятор

Изобретение относится к области обработки информации, в частности к конструкции оптических модуляторов. Техническими результатами являются уменьшение мерцания изображения и экономия энергии. В оптическом модуляторе каждый пиксель или субпиксель содержит наложенные друг на друга неподвижный...
Тип: Изобретение
Номер охранного документа: 0002563120
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.904a

Мишень для ионно-плазменного распыления

Мишень для ионно-плазменного распыления выполнена на основе оксида металла и содержит углерод. Концентрация углерода в мишени выбрана из условия обеспечения при температуре распыления теплового эффекта от экзотермической реакции при окислении углерода кислородом оксида металла и...
Тип: Изобретение
Номер охранного документа: 0002568554
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a256

Магниторезистивная ячейка памяти и способ ее использования

Изобретение относится к вычислительной технике. Технический результат заключается в упрощении технологии изготовления магниторезистивной ячейки памяти. Магниторезистивная ячейка памяти содержит перемагничиваемый и неперемагничиваемый слои, разделенные барьерным слоем, а также средства записи и...
Тип: Изобретение
Номер охранного документа: 0002573200
Дата охранного документа: 20.01.2016
27.05.2016
№216.015.4274

Устройство для вакуумной укупорки

Устройство содержит средство откачки и вакуумную камеру 6 в виде колокола с уплотнительной манжетой 12 и средством прижима крышки 3. При этом камера 6 содержит механизм предварительного прижатия крышки 3, включающий мембрану 9 или сильфон, установленную у верхней стенки камеры 6 и образующую...
Тип: Изобретение
Номер охранного документа: 0002585472
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.498f

Источник рентгеновского излучения

Изобретение относится к области рентгеновской техники. Источник рентгеновского излучения содержит автокатод, рабочей областью которого является кромка круглого отверстия в проводящем слое, а антикатод (анод) выполнен симметричным относительно оси отверстия автокатода в виде фигуры вращения и...
Тип: Изобретение
Номер охранного документа: 0002586621
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.67cf

Способ диспергирования материалов сложного состава

Изобретение относится к области измельчения различных материалов сложного состава, в частности диспергирования сложных неорганических соединений. Материал размалывают в атмосфере заданного состава. Материал в процессе размалывания облучают излучением. Излучение содержит фотоны с энергией от...
Тип: Изобретение
Номер охранного документа: 0002591469
Дата охранного документа: 20.07.2016
25.08.2017
№217.015.c8a5

Устройство для вакуумной укупорки

Устройство содержит вакуумную камеру, выполненную в виде колокола со средствами откачки и напуска газа или воздуха с уплотнительной манжетой на его кромке и со средством для прижатия крышки или введения пробки сосуда 8, установленный внутри колокола 1 подвижный или гибкий элемент 4, герметично...
Тип: Изобретение
Номер охранного документа: 0002619225
Дата охранного документа: 12.05.2017
04.04.2018
№218.016.3043

Источник излучения, случайный лазер и экран

Использование: для изготовления твердотельных источников излучения. Сущность изобретения заключается в том, что источник излучения содержит полупроводниковую матрицу с одним или множеством включений (макро- или микро-), выполненных из материала (или материалов), электролюминесценция которого...
Тип: Изобретение
Номер охранного документа: 0002644984
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3624

Материал для газотермического нанесения, способ его изготовления и способ его нанесения

Изобретение относится к области газотермического формирования слоев и покрытий и предназначено преимущественно для изготовления мишеней для магнетронного, электронно-лучевого и ионно-лучевого распыления. Порошковый материал для газотермического нанесения содержит порошок, не менее чем на 50%...
Тип: Изобретение
Номер охранного документа: 0002646299
Дата охранного документа: 02.03.2018
29.05.2018
№218.016.576a

Оптический модулятор (варианты)

Изобретение относится к области обработки оптической информации. В оптическом модуляторе света модуляция происходит посредством поворота подвижного поляризатора в виде диска относительно неподвижного поляризатора. Для уменьшения моментов сил трения, препятствующих повороту диска, согласно...
Тип: Изобретение
Номер охранного документа: 0002654828
Дата охранного документа: 22.05.2018
+ добавить свой РИД