×
29.06.2019
219.017.a023

СПОСОБ СЖИГАНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплоэнергетике и обеспечивает при его использовании эффективное паросажевое горение с образованием экологически чистого высотемпературного пламени. Указанный технический результат достигается в способе сжигания углеводородного топлива с использованием воздуха и водяного пара, подаваемых под давлением в горелочное устройство, причем топливо подвергают пиролизу до образования над его поверхностью дымогазовой смеси и в горелочном устройстве формируют зону ламинарного истечения паровой струи, в основание которой направляют поток дымогазовой смеси с возможностью получения на выходе из этой зоны пульсационного горения, причем дымогазовую смесь подают в горелочное устройство при температуре Т, определяемой из выражения: 2 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к теплоэнергетике, а именно к технологии сжигания углеводородных топлив, в том числе низкого качества.

Известен способ сжигания углеводородного топлива, заключающийся в одновременной подаче в горелочное устройство топлива, воздуха и перегретого водяного пара, причем влажность воздуха не превышает 90% для исключения возможности конденсации пара до его контакта с топливом (РТ №93/01449, F23L 7/00, 1994). /1/

Однако при перемешивании перегретого пара и топлива в горелочном устройстве происходит снижение температуры пара, что приводит к снижению степени его диссоциации, и, как следствие, ухудшается эффективность горения топлива.

Наиболее близким к заявленному изобретению является способ бессажного сжигания топлива, согласно которому в горелочное устройство вначале подают топливо и воздух. Топливо поджигают и в образовавшееся сажное пламя направляют струю перегретого водяного пара под давлением. После прогрева горелочного устройства перекрывают подачу воздуха полностью или частично, при этом водяной пар производит газификацию углерода (сажи) в синтез-газ, который выводит из горелочного устройства на догорание. Поскольку газификация сажи происходит в парах воды, обеспечивается высокая эффективность горения топлива без образования сажи (патент РФ №2219435, F23C 11/00, опубл. 20.12.2003 г., Бюл. №35). /2/

Следует отметить, что в этом способе сжигания углеводородного топлива перемешивание перегретого водяного пара и продуктов сжигания топлива происходит по всему объему горелочного устройства, что приводит к возникновению в нем неустойчивых и неуправляемых процессов, препятствующих формированию высокотемпературного факела, необходимого для догорания синтез-газа.

Задачей изобретения является разработка высокоэффективного, экологически чистого способа сжигания углеводородного топлива низкого качества за счет создания в горелочном устройстве условий, инициирующих процесс газификации сажевых частиц и догорания образующегося при этом синтез-газа.

Поставленная задача решена за счет того, что в известном способе сжигания углеводородного топлива с использованием воздуха и водяного пара, подаваемых в горелочное устройство, углеводородное топливо подвергают пиролизу до образования над его поверхностью дымогазовой смеси. В горелочное устройство подают воздух и перегретый водяной пар под давлением и в основание зоны ламинарного истечения паровой струи направляют поток дымогазовой смеси таким образом, чтобы на выходе из этой зоны возникло пульсационное горение, причем дымогазовую смесь подают в горелочное устройство при температуре T1, определяемой из выражения:

где Rкат - радиус сажевого кластера, обладающего повышенной активностью по разложению молекулы H2O до OH-радикала,

σ - коэффициент поверхностного натяжения воды,

ν - молекулярный объем конденсирующей молекулы,

k - постоянная Больцмана,

γ - стехиометрический коэффициент отношения количества топлива к количеству воздуха при появлении дымогазовой смеси,

T1 - температура дымогазовой смеси, подаваемой в горелочное устройство,

T2 - температура перегретого пара,

B - справочная константа, характеризующая давление насыщенных паров углеводородного топлива при заданной температуре.

Общими с прототипом признаками являются наличие горелочного устройства, в которое подают под давлением струю перегретого водяного пара и воздух.

Отметим, что во всех реакциях горения углеводородных топливных систем можно выделить главные газовые продукты реакций горения: OH-радикалы, H2O, CO и CO2. Известно, что OH-радикалы являются наиболее химически активными радикалами, инициирующими процесс горения. Проведенные научные эксперименты показали, что высокие концентрации OH-радикалов образуются в результате гетерогенно-каталитического разложения молекул воды на нанокластерах сажи в основании факела пульсационного горения, т.е. наносажевые частицы являются центрами повышенной каталитической активности разложения паров воды с появлением OH-радикалов.

Сущность заявленного способа заключается в реализации механизма нанокластерного инициирования процесса горения углеводородных топлив. Способ базируется на классической формуле Томсона в теории Беккера-Френкеля-Зельдовича.

Приведенное выше математическое выражение следует из формулы Томсона и позволяет определить соотношения температур перегретого водяного пара (T2) и дымогазовой смеси (T1) при подаче в горелочное устройство, с целью получения сажи заданного размера, инициирующих процесс горения до образования высокотемпературного факела.

По результатам научных экспериментов установлено, что центрами повышенной каталитической активности при горении углеводородных топлив являются нанокластеры сажи размером Rкат≈3÷5 нм.

Для ряда углеводородных топлив, включая соляровые топлива разных марок, установлено следующее.

1. Дымогазовая смесь в виде сажевой аэрозольно-газовой дымки над поверхностью солярового топлива появляется при температуре пиролизного разложения 400÷650°С (для всех практически значимых соляровых топлив).

2. Температура перегретого водяного пара T2 должна быть ниже температуры дымогазовой смеси T1, подаваемой в горелочное устройство, на 150-200°С.

Для других топлив, если известна T2, то T1 определяется из приведенного математического выражения. Входящие в него другие обозначения (σ, ν, γ, B) определяются из справочников или экспериментальным путем для данного вида топлива.

Образование нанокластерных частиц сажи происходит в зоне ламинарного истечения паровой струи при смешении пара с аэрозольными частицами дымогазовой смеси и их максимальная концентрация достигается на выходе из ламинарной зоны, где образуется первичный факел пульсационного горения, в котором происходит интенсивная газификация углерода (сажи). Затем образуется вторичный факел высокой температуры, в котором практиченски отсутствуют CO-аэрозоли и сажевые частицы, и догорают другие газы (синтез газа).

Направленная подача в горелочное устройство (в основание паровой струи) дымогазовой смеси, содержащей сажевые аэрозоли, способствует интенсивному образованию кластеров сажи нанометрового диапазона в определенной зоне (в основании первичного факела) и, следовательно, получению экологически чистого высокотемпературного вторичного факела.

На представленном чертеже приведена принципиальная схема процессов, протекающих в горелочном устройстве.

На схеме показано:

1 - пар насыщенный

2 - пар перегретый

3 - зона ламинарного истечения струи

4 - первый факел дымогазовой смеси испарившегося топлива

5 - основной поток дымогазовой смеси от топлива

6 - зона вхождения основного потока дымогазовой смеси в центральную парогазовую струю с нанокластерами сажи

7 - взаимодействие факела с внешней атмосферой и дополнительным окислителем и образование вторичного высокотемпературного факела

Заявленный способ подтверждается следующими примерами.

Пример 1

В отдельную емкость наливают солярку и нагревают до температуры 400°С в нижней емкости для солярки, при которой начинается образование дымогазовой смеси. Используя приведенную в описании математическую формулу, учитывая, что размер кластеров сажи Rкат~3 нм, а температура перегретого пара T2=430°С, определяют, что T1=630°С. Повышают температуру пиролиза солярки до 630°С, при этом образуется крупная сажа (аэрозоль размером около долей микрометра). Полученную дымогазовую смесь направляют в основание зоны 3 (в струю перегретого водяного пара 2) горелочного устройства. Происходит смешение сажевого аэрозоля с парами воды с образованием нанокластерных частиц сажи. Возникает первичный факел горения 4. Затем вторичный факел 7 высокой температуры (выше 1650°С в центральной части). Он практически не содержит CO-аэрозолей и сажи.

Пример 2

После начала пиролизного разложения солярки (400°С), как в примере 1, поднимают температуру до 700-750°С (T1). Поток полученной при этом дымогазовой спеси направляют в основание струи перегретого водяного пара 2 (зона 3). Горение в первичном факеле было менее интенсивным, чем в примере 1, а вторичный факел имел температуру ниже 1100°С и содержал CO-аэрозоли и остаточную сажу. Отсюда следует, что при несоблюдении соотношения температур T1 и T2 согласно математическому выражению практически не образуется нанокластерная сажа при пиролизе топлива.

Пример 3

Солярку нагревают в отдельной емкости до температуры 350-390°С. В этом случае происходит пиролиз до «белого аэрозоля» (органический аэрозоль), а нанокластерной сажи не образуется. Полученную дымогазовую смесь с T1=390°C направляют в горелочное устройство, как в примере 1. Горение происходит только в первичном факеле, а высокотемпературный вторичный факел не образуется.

Пример 4

В режимах примера 1 поток дымогазовой смеси, образованный от пиролиза солярки, вводят в горелочное устройство по всей поверхности паровой струи 1. Горение происходит в первичном факеле 4. Высокотемпературный факел не образуется, происходит массовый выброс недогоревшей сажи.

Пример 5

В условиях примеров 1-4 сжигали старый рубероид, рис растительный, масло бытовое, очищенное от примесей. Вторичный высокотемпературный экологически чистый факел образовывался только в условиях примера 1.

Пример 6

При сжигании пластмассовых отходов (бутылки, вторсырье) в условиях примеров 1-4 с проведением газового пиролиза не удалось получить высокотемпературный факел, т.к. газовая смесь (без дыма), направляемая в горелочное устройство (зона 2), не содержала нанокластерные сажевые аэрозоли.

Пример 7

Для сжигания газа метан-пропан из стандартных бытовых баллонов поток горячих газов (без дыма) направляли в горелочное устройство в режимах примеров 1-4. Первичный факел имел температуру 1200-1250°С. При смешении с парами воды происходило только его охлаждение до более низкой температуры, что приводило к появлению недогоревших компонентов газового синтеза. Вторичный факел не образовывался.

Предложенный способ позволяет сжигать некондиционные углеводородные топливные системы в среде перегретого водяного пара повышенного давления в процессе энергоэффективного и экологически чистого горения. Он может найти применение в горелочных устройствах различного назначения, используемых в ЖКХ, строительстве, металлургии, сельском хозяйстве и других отраслях. Его применение для сжигания топлива низкого качества («бросовое» топливо) направлено на решение проблемы сбережения качественного топлива, а также безотходности промышленного производства.

Источники информации

1. РТ №93/01449, F23L 7/00, 1994.

2 Патент РФ №2219435, F23C 11/00, опубл. 20.12.2003 г., Бюл. №35.

Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
09.05.2019
№219.017.4f56

Композиция бетулина с биосовместимыми носителями и способ ее получения

Изобретение относится к фармацевтической и пищевой промышленности, в частности к способу получения композиции бетулина с биосовместимым носителем путем механической обработки смеси бетулина и полимерного водорастворимого носителя в мельнице-активаторе при определенных условиях. Композиция,...
Тип: Изобретение
Номер охранного документа: 0002401118
Дата охранного документа: 10.10.2010
18.05.2019
№219.017.5936

Способ получения гамма-глицина

Изобретение относится к области химико-фармацевтической промышленности, конкретно к способу получения гамма-глицина, имеющего широкое применение в технике, медицине и пищевой промышленности. Способ заключается в перекристаллизации глицина путем обработки глицина смесью паров воды и аммиака в...
Тип: Изобретение
Номер охранного документа: 0002411233
Дата охранного документа: 10.02.2011
29.05.2019
№219.017.65af

Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов

Изобретение относится к спектрофотометрии и может быть использовано для исследования пространственного распределения комплексного показателя преломления по поверхности сильно поглощающих материалов. Образец размещают на плоской поверхности элемента НПВО с высоким показателем преломления, на...
Тип: Изобретение
Номер охранного документа: 0002396547
Дата охранного документа: 10.08.2010
29.05.2019
№219.017.668d

Способ восстановления параметров смещения дна в зоне источника цунами

Изобретение относится к способам изучения цунами и может быть использовано при мониторинге подводных цунамигенных землетрясений. Сущность: размещают в прилегающей к предполагаемому очагу цунамигенного землетрясения зоне некоторое число глубоководных гидрофизических станций. Регистрируют с...
Тип: Изобретение
Номер охранного документа: 0002376614
Дата охранного документа: 20.12.2009
29.06.2019
№219.017.9ef8

Способ построения сейсмического глубинного разреза

Изобретение относится к сейсмической разведке и может быть использовано для построения изображений сейсмических глубинных разрезов. Сущность способа состоит в том, что для получения изображения сейсмического глубинного разреза каждую отображаемую точку (ОТ) последовательно наносят на разрез...
Тип: Изобретение
Номер охранного документа: 0002415449
Дата охранного документа: 27.03.2011
Показаны записи 21-28 из 28.
10.11.2019
№219.017.dfca

Автономное горелочное устройство длительного действия

Изобретение относится к области энергетики. Автономное горелочное устройство длительного действия содержит корпус в форме стакана, встроенный парогенератор водяного пара, состоящий из трех блоков, а именно бачка-испарителя в виде кольцевой камеры, паросепаратора в виде кольцевой камеры и...
Тип: Изобретение
Номер охранного документа: 0002705494
Дата охранного документа: 07.11.2019
10.11.2019
№219.017.e03f

Пусковое горелочное устройство

Изобретение относится к области энергетики. Пусковое горелочное устройство содержит корпус, парогенератор водяного пара, состоящий из установленных соосно и соединенных между собой трубками бачка-испарителя и паросепаратора, выполненных в виде кольцевых камер, пароперегревателя, выполненного в...
Тип: Изобретение
Номер охранного документа: 0002705495
Дата охранного документа: 07.11.2019
29.11.2019
№219.017.e76b

Способ подготовки пылеугольного топлива для сжигания

Изобретение относится к теплоэнергетике, а именно к технологии сжигания углеводородных топлив, в том числе низкого качества. Описан способ подготовки пылеугольного топлива для сжигания, заключающийся в сушке и дроблении сырого угля, причем на этот уголь наносят окислы и/или гидроокислы железа в...
Тип: Изобретение
Номер охранного документа: 0002707276
Дата охранного документа: 26.11.2019
22.12.2019
№219.017.f09e

Устройство для исследования образования отложений на стенках топки котла при сжигании топлива

Изобретение относится к энергетике, а точнее к контрольным устройствам для исследования образования отложений на стенках топки котла при сжигании топлива. Устройство для исследования образования отложений на стенках топки котла при сжигании топлива включает жаропрочную трубку, введенную через...
Тип: Изобретение
Номер охранного документа: 0002709691
Дата охранного документа: 19.12.2019
28.03.2020
№220.018.1181

Способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке

Изобретение относится к энергетике. Способ оптимизации капельно-факельного сжигания водоугольного топлива в вихревом потоке включает определение эталонных характеристик процесса горения для данного вида топлива в данной топке, периодическое измерение показаний датчиков в контрольных...
Тип: Изобретение
Номер охранного документа: 0002717868
Дата охранного документа: 26.03.2020
20.04.2023
№223.018.4cb2

Способ внесения в почву зольных минеральных добавок

Изобретение относится к области сельского хозяйства, в частности к полеводству. В способе в качестве зольных минеральных добавок используют золу-унос углей, сжигаемых на ТЭЦ. Используют золу-унос бурых углей с дисперсностью до 100 мкм, которую наносят слоем 1-10 мм на первый снежный покров при...
Тип: Изобретение
Номер охранного документа: 0002757060
Дата охранного документа: 11.10.2021
21.04.2023
№223.018.4f67

Способ приготовления компоста

Способ относится к сельскому хозяйству, к утилизации отходов, посредством переработки птичьего помета и утилизации золы с получением компоста. Способ включает формирование бурта, добавление к птичьему помету наполнителя и перемешивание, компостирование при аэрации воздухом в термофильной фазе,...
Тип: Изобретение
Номер охранного документа: 0002792988
Дата охранного документа: 28.03.2023
11.05.2023
№223.018.540e

Котёл для совместного сжигания пылеугольного и водоугольного топлива

Изобретение относится к промышленной теплоэнергетике, жилищно-коммунальному хозяйству. Котёл для совместного сжигания пылеугольного и водоугольного топлива содержит вертикальную топку, которая оборудована расположенными в три яруса блоками основных горелок и расположенным в четвёртом ярусе...
Тип: Изобретение
Номер охранного документа: 0002795413
Дата охранного документа: 03.05.2023
+ добавить свой РИД