×
29.06.2019
219.017.9f52

Результат интеллектуальной деятельности: СПОСОБ ИМПУЛЬСНОЙ ВИХРЕТОКОВОЙ ДЕФЕКТОСКОПИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к неразрушающему контролю и может быть использовано для оценки состояния электропроводящих изделий, например оболочек тепловыделяющих элементов (твэлов) ядерных реакторов. Способ импульсной вихретоковой дефектоскопии включает определение интервала времени от начала возбуждающего импульса, посылаемого на вихретоковый преобразователь, до пересечения нулевого уровня по напряжению графиком вносимого отклика преобразователя и в соответствии с полученным значением судят о свойствах сканируемого изделия, за нулевой уровень по напряжению, в каждой точке сканирования, принимают амплитуду вносимого отклика, соответствующую моменту времени, смещенному относительно начала возбуждающего импульса на некоторую постоянную величину и принятому за новую точку отсчета по времени. Изобретение обеспечивает повышение разрешающей способности метода импульсных вихревых токов в определении параметров дефектов. 1 з.п. ф-лы, 4 ил.

Изобретение относится к неразрушающему контролю и может быть использовано для оценки состояния электропроводящих изделий, например оболочек тепловыделяющих элементов (твэлов) ядерных реакторов.

Цель изобретения - повышение разрешающей способности метода импульсных вихревых токов в определении параметров дефектов.

Известен способ (G.Wittig, H.-M.Thomas. Design of a pulsed eddy-current test equipment with a digital signal analysis. - Eddy-current characterization of materials and structures. ASTM STP 722, 1981. P.387-397) оценки параметров дефектов токопроводящих изделий при импульсном вихретоковом контроле с помощью дефектоскопа модуляционного типа, заключающийся в измерении мгновенных значений Ui выходного сигнала дифференциального вихретокового преобразователя, соответствующих определенным моментам времени ti от начала импульса возбуждения. Прохождение дифференциального преобразователя над дефектом контролируемого изделия приводит к изменению выходного сигнала и, следовательно, его огибающих, полученных для выбранных моментов времени. Эти огибающие будут отличаться по амплитуде и форме. Определение параметров дефекта сводится при этом к поиску положения узловой точки, т.е. такого момента времени, при котором изменение амплитуды сигнала на дефектном участке минимально. По результатам измерения имитатора с дефектами разной глубины получают зависимость положения узловой точки от глубины дефекта. С помощью этой зависимости определяют глубину аномалий объекта контроля по положению узловых точек их откликов.

Основные недостатки этого способа:

- малое количество измерительных каналов требует многократного сканирования изделия для точного нахождения узловой точки;

- относительно высокая погрешность измерения параметров дефекта из-за дискретности шага стробирования по времени выходного сигнала преобразователя и влияния фоновых факторов.

Наиболее близким аналогом заявляемого технического решения по наибольшему количеству существенных признаков является способ определения параметров дефекта по положению на оси времени первой точки нуля tZC (Time to Zero-Crossing) графика вносимого отклика от дефекта (US Patent №6037768. J.C. Moulder et al. Pulsed eddy current inspections and the calibration and display of inspection results. 14.03.2000 г.).

В способе по прототипу вдоль контролируемого изделия перемещают вихретоковый преобразователь, возбуждающую катушку которого запитывают импульсом тока в каждой точке контроля, и регистрируют выходной сигнал с измерительных обмоток преобразователя. Далее получают график вносимого отклика от дефекта путем взаимного вычитания выходных напряжений преобразователя на дефектном и бездефектном участках. Чем глубже располагается дефект в изделии, тем больше значение tZC.

Прототип оперирует с полностью оцифрованным сигналом и превосходит аналог по скорости определения точек нуля. Однако ему свойственна та же точность в определении их положения на оси времени при равном шаге дискретизации из-за идентичности принципов, заложенных в основу способов. Повышение точности за счет уменьшения шага дискретизации сигнала приводит к усложнению аппаратуры, поскольку возрастают требования к быстродействию АЦП, схем стробирования, управления и т.п. Уменьшение шумов измерительного тракта после использования с этой целью приемлемых аппаратных и программных средств возможно только при увеличении количества повторных измерений выходного сигнала преобразователя в каждой точке сканирования и, соответственно, общего времени измерений.

Заявляемое техническое решение дает принципиальное улучшение в точности определения параметров дефектов по сравнению с прототипом при тех же характеристиках измерительной аппаратуры.

Для этого в заявляемом способе определяют интервал времени от начала возбуждающего импульса, посылаемого на вихретоковый преобразователь, до пересечения нулевого уровня по напряжению графиком вносимого отклика преобразователя и в соответствии с полученным значением судят о свойствах сканируемого изделия, в каждой точке сканирования за нулевой уровень по напряжению принимают амплитуду вносимого отклика, соответствующую моменту времени, смещенному относительно начала возбуждающего импульса на некоторую постоянную величину и принятую за новую точку отсчета по времени.

Нулевой уровень по напряжению получают путем вычитания из двумерного массива измерений амплитуды вносимого отклика А[К×Т] (К - координата сканирования, Т - время выборки амплитуды вносимого отклика) строки результатов измерений амплитуды А[К×Тсм.], где Тсм. - время выборки, смещенное от начала возбуждающего импульса на заданную величину.

В предлагаемом способе параметр дефекта, например глубина, оценивается по положению первой точки нуля вносимого отклика относительно точки отсчета, смещенной по времени от начала импульса возбуждения на некоторую постоянную величину. Напряжение вносимого отклика, соответствующее новой временной точке отсчета, принимается за нулевой уровень по напряжению.

Способ импульсной вихретоковой дефектоскопии иллюстрируется чертежами, где на фиг.1a - начальное положение вносимого отклика от неглубокого наружного дефекта на плоскости время-амплитуда, а фиг.1б - положение вносимого отклика, преобразованного предлагаемым способом. После установления новой точки отсчета времени, смещенной на величину tсм. относительно начала возбуждающего импульса, глубину дефекта определяют по положению нуля t0 преобразованного отклика (см. фиг.1б). При этом за нулевой уровень по напряжению принимается Uсм. (см. фиг.1а).

На фиг.2а показаны вносимые отклики и положения первого нуля для неглубокого (1) и глубокого (2) дефектов изделия, полученные способом прототипа, а на фиг.2б - предлагаемым способом.

Для вносимых откликов обоих дефектов за начало отсчета времени принимается момент времени tсм. (см. фиг.2а). Для дефекта 7 нулевой уровень по напряжению смещается на величину Uсм.1, полученную при выборке из вносимого отклика дефекта в момент времени tсм. (см. фиг.2а). Для дефекта 2 нулевой уровень по напряжению не смещается (см. фиг.2б), поскольку в момент времени tсм. исходное значение вносимого отклика этого дефекта было равным нулю (см. фиг.2а).

На фиг.3 показаны вносимые отклики (а) и результаты измерения положения первого нуля tZC (б), полученные способом прототипа для неглубокого дефекта 7, дефекта средней глубины 2.

На фиг.4 показаны вносимые отклики (а) и результаты измерения положения первого нуля t0 (б), полученные предлагаемым способом для неглубокого дефекта 7, дефекта средней глубины 2 и глубокого дефекта 3.

На трубку из циркониевого сплава Э-110 диаметром 9,1 мм с толщиной стенки 0,65 мм были нанесены два дефекта: наружная кольцевая риска глубиной 0,1 мм и наружное глухое отверстие глубиной 0,6 мм. Изготовленный образец перемещали через дифференциальный проходной вихретоковый преобразователь, который запитан импульсами тока путем быстрой разрядки через возбуждающую обмотку датчика предварительно заряженного конденсатора, возбуждая тем самым импульсные вихревые токи в образце. На выходе преобразователя в каждой точке сканирования образца получали импульс отклика, форма которого запоминается путем последовательной выборки и оцифровки его мгновенных значений, соответствующих моментам времени, определяемым стробирующими импульсами с частотой 40 МГц (шаг стробирования 25 нс). Таким образом, при сканировании образца для каждого строба (т.е. момента стробирования от начала импульса отклика) формируется совокупность значений импульса (в единицах напряжения), каждое из которых соответствует определенной координате образца. Далее для каждой координаты получают вносимый отклик преобразователя путем вычитания из импульса отклика в этой точке импульса отклика в точке на известном бездефектном участке трубки.

Фиг.2 иллюстрирует более высокую разрешающую способность разработанного способа при определении глубины дефекта по сравнению с прототипом, так как наблюдаемая в первом случае разница в значениях положения нуля Δt0 существенно больше, чем ΔtZC, наблюдаемая во втором случае.

Фиг.3а иллюстрирует вид вносимых откликов, полученных при расположении одной из двух измерительных обмоток (каждый раз это одна и та же обмотка) дифференциального датчика напротив дефектов образца. Результаты измерения момента времени пересечения нуля (tZC) для двух дефектов приведены в таблице (фиг.3б).

В качестве новой временной точки отсчета выбран момент времени, равный 625 нс (25 стробов) от начала импульса возбуждения. Для этого момента времени амплитуда отклика от неглубокого дефекта равна 65 мВ, для глубокого - 88 мВ. Следовательно, новый нулевой уровень по напряжению для 1-го дефекта будет находиться выше прежнего на 65 мВ, для 2-го дефекта - на 88 мВ. На фиг.4а показано расположение вносимых откликов этих дефектов относительно новых точек отсчета по времени и напряжению. Результаты измерения момента времени пересечения нового нуля (t0) для двух дефектов приведены в таблице (фиг.4б).

Сопоставление результатов измерения, представленных на фиг.3 и фиг.4, демонстрирует более высокую разрешающую способность разработанного способа при определении параметров дефекта по сравнению с прототипом. Так, значение ΔtZC, полученное способом прототипа для неглубокого и глубокого наружных дефектов, составило 175 нс (7 стробов), а значение Δt0, полученное предлагаемым способом для этих же дефектов, составило 500 нс (20 стробов), т.е. почти в 3 раза больше.

Источник поступления информации: Роспатент

Показаны записи 21-28 из 28.
20.02.2016
№216.014.ce91

Способ выделения препарата актиния ac из смеси th и th

Изобретение относится к технологии получения радиоактивных изотопов. Заявленный способ выделения препарата Ас из смеси Th и Th включает сорбцию смеси изотопов тория на сильноосновной анионообменной смоле с последующей очисткой раствора, содержащего Ас, от примесей, отделяют радиоактивные...
Тип: Изобретение
Номер охранного документа: 0002575881
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e917

Способ выделения радионуклида кадмий-109

Изобретение относится к области радиохимии и может быть использовано в технологии получения радиоактивных изотопов и аналитической химии. Способ выделения радионуклида кадмий-109 раствора, содержащего радионуклиды кадмия и серебра, заключается в растворении облученного серебра в азотной...
Тип: Изобретение
Номер охранного документа: 0002575886
Дата охранного документа: 20.02.2016
01.03.2019
№219.016.cfc5

Способ эксплуатации ядерного реактора с бериллиевым замедлителем

Изобретение относится к ядерной энергетике, в частности к управлению внутриреакторными процессами, и может быть использовано при эксплуатации действующих и сооружаемых ядерных реакторов с бериллиевым замедлителем для увеличения срока службы реактора без замены бериллиевого замедлителя. Для...
Тип: Изобретение
Номер охранного документа: 0002431895
Дата охранного документа: 20.10.2011
01.03.2019
№219.016.cfcb

Способ испытания твэлов в режиме импульсного увеличения мощности в исследовательском ядерном реакторе, работающем на стационарной мощности

Изобретение относится к ядерной технике и может быть использовано для решения задачи испытания твэлов в режиме импульсного увеличения мощности в исследовательском ядерном реакторе, работающем на стационарной мощности. В один из каналов реактора на уровень активной зоны реактора устанавливают...
Тип: Изобретение
Номер охранного документа: 0002431207
Дата охранного документа: 10.10.2011
01.03.2019
№219.016.cfe4

Способ определения массовых концентраций основных и примесных элементов в материалах и изделиях из титаната диспрозия (dyo·tio) гафната диспрозия (ndyo·mhfo) и их смесей

Изобретение относится к аналитическому контролю химического состава материала и изделий из титаната диспрозия (DyO·TiO), гафната диспрозия (nDyO·mHfO) и их смесей. Способ определения массовых концентраций основных и примесных элементов в материалах и изделиях, содержащих титанат диспрозия...
Тип: Изобретение
Номер охранного документа: 0002449261
Дата охранного документа: 27.04.2012
11.03.2019
№219.016.ddc9

Способ эксплуатационного ядерного реактора с органическим теплоносителем

Изобретение относится к ядерной энергетике в области обеспечения теплоснабжения и может быть использовано при создании атомных станций малой мощности для обслуживания трубопроводных транспортных систем нефтепродуктов. Способ эксплуатации ядерного реактора с органическим теплоносителем...
Тип: Изобретение
Номер охранного документа: 0002468452
Дата охранного документа: 27.11.2012
29.06.2019
№219.017.a0bb

Способ испытания в исследовательском ядерном реакторе твэлов в режиме циклического изменения мощности

Изобретение относится к ядерной энергетике в области управления внутриреакторными процессами и может быть использовано при проведении испытаний твэлов в режиме циклического изменения мощности в исследовательском ядерном реакторе. Размещают испытываемые твэлы одновременно в двух каналах реактора...
Тип: Изобретение
Номер охранного документа: 0002436177
Дата охранного документа: 10.12.2011
29.06.2019
№219.017.a14c

Способ регенерации радия из его сульфата

Изобретение относится к области радиохимии и может быть использовано в аналитической химии и в химической технологии, в частности для переработки отработанных радиоактивных источников излучения. Способ регенерации радия из его сульфата заключается в том, что растворяют сульфат радия в щелочном...
Тип: Изобретение
Номер охранного документа: 0002441842
Дата охранного документа: 10.02.2012
Показаны записи 1-3 из 3.
10.08.2014
№216.012.e608

Твэл ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано при создании тепловыделяющих элементов (твэлов) для атомных реакторов на тепловых и быстрых нейтронах. Технический результат - повышенный теплосъем в твэле ядерного реактора, что позволяет существенно повысить...
Тип: Изобретение
Номер охранного документа: 0002524681
Дата охранного документа: 10.08.2014
01.03.2019
№219.016.cc82

Способ импульсного вихретокового контроля

Изобретение может быть использовано для идентификации дефектов в электропроводящих изделиях, например в оболочках тепловыделяющих элементов атомных реакторов. Для этого в способе импульсного вихретокового контроля отображают мгновенные амплитуды выходного импульса проходного дифференциального...
Тип: Изобретение
Номер охранного документа: 0002377554
Дата охранного документа: 27.12.2009
10.09.2019
№219.017.c993

Способ управления исполнительным механизмом робота-манипулятора с силомоментной обратной связью и устройство для его осуществления

Изобретение относится к области машиностроения, в частности к устройству для управления роботом-манипулятором с силомоментной обратной связью, установленным на подвижной опоре в радиационно-защитной камере и способу управления посредством такого устройства. Устройство содержит рукоятку,...
Тип: Изобретение
Номер охранного документа: 0002699703
Дата охранного документа: 09.09.2019
+ добавить свой РИД