×
29.06.2019
219.017.9e7f

СПОСОБ ОПРЕДЕЛЕНИЯ ИЗНОСА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к методам диагностики узлов трения, в частности подшипников скольжения, на прогнозирование износа их в процессе эксплуатации в условиях запыленной среды и может широко применяться в машиностроительной, металлургической, строительной и других отраслях промышленности. Технический результат - снижение износа, повышение эффективности, работоспособности, прочности, надежности сопряжения вал-втулка, повышение достоверности прогнозирования износа подшипников скольжения. Для достижения данного результата в способе дополнительно определяют износ втулки с учетом динамического нагружения и процентного содержания абразивных частиц в пыли расчетным путем. 1 ил., 3 табл.
Реферат Свернуть Развернуть

Изобретение относится к методам диагностики узлов трения, в частности подшипников скольжения, на прогнозирование износа их в процессе эксплуатации в условиях запыленной среды и может широко применяться в машиностроительной, металлургической, строительной и других отраслях промышленности.

Известен способ определения износа подшипников скольжения, по которому определяют оценку среднего ресурса , НДГ Т0.9 при доверительной вероятности q, равной 0.9, точечную оценку среднего срока службы T согласно зависимостям

причем

где N - количество наработок;

ti - наработка, сутки;

Иq - квантиль нормального распределения, определяемый согласно табличным данным;

- отклонение;

U - предельно допустимая величина износа, мм;

- зазор в начальный момент времени, мм;

- износ в сутки, мм/ сутки;

NЗ - количество замеров;

µ2o - зазор через определенный промежуток времени, мм;

Т - время работы узла, час;

(Ю.В.Жиркин. Надежность, эксплуатация и контакт деталей машин. - М.: Машиностроение: МГТУ, 2002, 330 с.).

Недостатком известного способа является учет только статической нагрузки, прикладываемой к узлам механизмов машин, без учета быстро меняющейся во времени динамической нагрузки при наличии ускорений в рассматриваемых узлах механизмов. Оценка выполняется без учета процентного состава пыли, соотношения абразивных частиц различной твердости. В результате, как видно из табл.1, 2 и 3, полученные средняя наработка узла и износ за 1 час работы значительно отличаются от промышленных данных.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому изобретению является способ определения износа подшипников скольжения, по которому расчет износа вала И1 и втулки И2 подшипникового узла выполняют согласно зависимостям

причем

где h1, h2 - глубины внедрения абразивной частицы в поверхность соответственно вала и втулки, мкм;

R - радиус среднего размера абразивной частицы, мкм;

а - радиус пятна контакта в направлении скольжения, мкм;

np1, np2 - число циклов, приводящих к разрушению соответственно вала и втулки;

l - длина подшипника, мм;

na - число одновременно находящихся абразивных частиц в зазоре;

ω - частота вращения вала, с-1;

Smax, Smin - соответственно максимальный и минимальный размеры частиц в зазоре, мкм;

dcp - средний размер абразивной частицы, мкм;

φ - угол, ограниченный участком износа, рад;

Na - сила, действующая на единичную абразивную частицу, МПа;

С - коэффициент формы абразивной частицы, учитывающий повышение несущей способности контакта вследствие дополнительных напряжений в перпендикулярных направлениях;

σT - предел текучести материала, МПа;

µ - коэффициент трения;

Е - постоянная, равная 2,1*105 Н/мм2;

σb - прочность пальца, МПа;

К - постоянная, равная по У.А.Икрамову 1.73;

τ - удельная сила трения, МПа;

t - показатель степени, равный по У.А. Икрамову 1,1-1,3;

εcp - средняя концентрация абразивных частиц в зазоре, %;

Qn - расход смазки, м3/ч;

γм - плотность смазки, г/см3;

k1, k2 - коэффициенты;

γa - плотность частиц, г/см3;

r1, r2 - радиусы соответственно вала и втулки, мм;

δ - толщина слоя смазки, мкм;

Ra1, Ra2 - среднее значение высот микронеровностей, мкм;

hi - глубина внедрения абразивной частицы, мкм;

рч - твердость абразивной частицы, МПа;

f - коэффициент трения;

ϑ - упругая постоянная материала (У.А.Икрамов. Расчетные методы оценки абразивного износа. - М.: Машиностроение, 1987, 288 с.).

Недостатком известного способа является учет только статической нагрузки, прикладываемой к узлам механизмов машин, без учета быстро меняющейся во времени динамической нагрузки и наличия ускорений в рассматриваемых узлах механизмов, принятием ряда допущений о недеформируемости абразивной частицы повышенной твердости при фактически изменяющихся условиях влияния абразивных частиц различной твердости на сопрягаемые поверхности узлов механизмов машин оценка выполняется без учета процентного состава пыли, соотношения абразивных частиц различной твердости. В результате, как видно из табл.1, 2 и 3, полученные средняя наработка узла и износ за 1 час работы также значительно отличаются от промышленных данных.

Технический результат использования изобретения заключается в снижении износа, повышении эффективности, работоспособности, прочности, надежности сопряжения вал-втулка, повышении достоверности прогнозирования износа подшипников скольжения за счет учета при расчете и моделирования процессов прогнозирования износа подшипников скольжения быстро меняющейся во времени динамической нагрузки и наличия ускорений в рассматриваемых узлах механизмов в зависимости от материала вала, втулки, режима работы, содержания абразивной пыли, структуры, твердости абразивных частиц и процентного соотношения видов абразивных частиц различной твердости.

Технический результат предлагаемого изобретения достигается тем, что в способе определения износа подшипника скольжения, включающем определение износа втулки И2 за один час работы, дополнительно определяют износ втулки с учетом динамического нагружения и процентного содержания абразивных частиц в пыли согласно зависимости

причем

где - максимальный размер абразивных частиц с учетом динамического прогиба fД мкм;

dcp - средний размер абразивной частицы, мкм;

- глубина внедрения абразивной частицы в поверхность соответственно вала и втулки с учетом динамической нагрузки, мкм;

φ - величина угла, ограниченного участком износа, рад;

np2 - число циклов, приводящих к разрушению втулки;

Smax, Smin - соответственно максимальный и минимальный размер частиц в зазоре, мкм;

l - длина подшипника, мм;

R - радиус среднего размера абразивной частицы, мкм;

na - число одновременно находящихся абразивных частиц в зазоре;

ω - частота вращения вала, с-1.

Т - время работы узла, час;

К - установленный опытным путем эмпирический поправочный коэффициент, величину которого выбирают в зависимости от процентного соотношения абразивных частиц в пыли;

КД - динамический коэффициент;

fД - величина динамического прогиба, мкм;

РД - величина динамической нагрузки, МПа;

С - коэффициент формы абразивной частицы, учитывающий повышение несущей способности контакта вследствие дополнительных напряжений в перпендикулярных направлениях;

σT - предел текучести материала, МПа;

δ - толщина слоя смазки, мкм;

Ra1, Ra2 - среднее значение высот микронеровностей, мкм;

εcp - средняя концентрация абразивных частиц в зазоре, %;

Qn - расход смазки, м3/ч;

γm - плотность смазки, г/см3;

k1, k2 -коэффициенты;

γa - плотность частиц, г/см3;

r1, r2 - радиусы соответственно вала и втулки, мм;

h - расстояние динамического удара, мм;

fcm - величина статического прогиба, мм;

Рcm- статистическая нагрузка, нагруженная к узлу, принимаемая из условий эксплуатации, МПа;

Q - объем смазки в системе, м3;

Е - постоянная, равная 2,1*105, Н/мм;

j - осевой момент инерции;

Д - диаметр рабочего вала, мм.

Условия работы подшипников скольжения машин, эксплуатируемых в запыленной среде, характеризуются высоким содержанием в смазывающей жидкости частиц пыли, для исследования износостойкости трущихся сопряжений разработано заявляемое изобретение аналитического расчета анализа механизма взаимодействия абразивной частицы с поверхностью трения при изнашивании сопряженных поверхностей, при котором значительное влияние на интенсивность изнашивания оказывает кинематическое взаимодействие абразивной частицы с поверхностями пары трения. В зависимости от шероховатости, твердости поверхностей пары трения скольжения абразивные частицы склонны закрепляться в неподвижной или более шаржируемой поверхности, изнашивая сопряженную поверхность. Известно, что материалы с меньшей твердостью, например ковкий чугун, бронза, пластмассы, сильнее шаржируют абразивные частицы. Так как с уменьшением твердости изнашиваемого материла износостойкость снижается, то хорошо шаржируемые материалы являются менее износостойкими. Однако специфика абразивного износа такова, что уже само шаржирование поверхностей трения абразивными частицами уменьшает интенсивность их изнашивания: абразивные частицы не скользят по поверхности, следовательно, не могут ее изнашивать. В то же время сопряженная поверхность изнашивается более интенсивно, так как абразивные частицы скользят по ней. Появляется возможность управлять процессом абразивного изнашивания. Исчезает необходимость повышения износостойкости обеих поверхностей трения. Кроме того, заявляемое изобретение учитывает действие важных динамических нагрузок на сопряженные поверхности деталей, оказывающих разрушающее воздействие на 72% объема сопряженных деталей. Динамическая нагрузка, приложимая к сопряженным деталям узлов механизмов, сравнительно быстро меняется во времени, динамическое действие сил характеризуется наличием ускорений в сопряженных деталях. В зависимости от знака ускорения меняется характер деформации и разрушения тела, появляются колебания, ударные явления, многие материалы, которые при статическом нагружении являются пластичными, при ударе работают как хрупкие, при действии многократно повторяющейся нагрузки прочность материалов резко снижается.

В таблице 1 приведены результаты сравнения средних наработок подшипникового узла, рассчитанных по аналогу (см. чертеж позиция (а)) и прототипу (см. чертеж позиция (б)), с промышленными данными (см. чертеж позиция (г)). В табл.2 приведены результаты сравнения износа втулки за 1 час работы подшипникового узла при различных схемах нагружения, приложения нагрузки - статической по аналогу (см. чертеж позиция (а)) и динамической - по прототипу (см. чертеж позиция (б)). В табл.3 приведены результаты сравнения износа за 1 час работы подшипникового узла при различных (50, 100, 150 и 200 МПа) нагрузках, приложенных на узел, при статическом нагружении по аналогу (см. чертеж позиция (а)), при динамическом нагружении по прототипу (см. чертеж позиция (б)), при динамическом нагружении с поправочным коэффициентом на состав абразивной пыли из частиц различной твердости по заявляемому изобретению (см. чертеж позиция (в)) и промышленные данные (см. чертеж позиция (г)). В соответствии с данными табл.3 на фигуре приведены графики зависимости износа подшипникового узла от нагрузки при различных условиях, позиция а - статистическое нагружение (по аналогу); 6 - динамическое нагружение (по прототипу); в - динамическое нагружение с учетом поправочного коэффициента на состав абразивной пыли из частиц различной твердости (по заявляемому изобретению); г - промышленные данные.

Способ осуществляют следующим образом.

С учетом того, что износ втулки сопряжения происходит интенсивнее, чем износ пальца, износостойкость узла зависит от долговечности работы втулки, в заявляемом изобретении износостойкость сопряжения определяют по износу втулки с учетом динамического нагружения и процентного содержания абразивных частиц в пыли.

Для расчета износа вала определяют средний размер dcp абразивной частицы, затем последовательно определяют величины R радиуса среднего размера абразивной частицы, максимального Smax и минимального Smin размеров частиц в зазоре, числа na одновременно находящихся абразивных частиц в зазоре, момента инерции j, статического прогиба fcm, динамического коэффициента КД, динамического прогиба fД, максимального и минимального размеров абразивных частиц с учетом динамического прогиба fД, динамической нагрузки РД, глубин внедрения и абразивной частицы в поверхность соответственно вала и втулки с учетом динамической нагрузки.

Износ втулки с учетом динамического нагружения и процентного содержания абразивных частиц в пыли окончательно определяют по зависимости

где К - установленный опытным путем эмпирический поправочный коэффициент, величину которого выбирают в зависимости от процентного соотношения абразивных частиц в пыли.

Пример конкретного выполнения способа

Для расчета износа втулки с учетом динамического нагружения и процентного содержания абразивных частиц в пыли сначала определяют средний размер dcp абразивной частицы при максимальном и минимальном размерах абразивной частицы, равных соответственно 4.0 мкм и 0.4 мкм, dcp по зависимости равен

Радиус R среднего размера абразивной частицы равен по зависимости

При радиусе втулки подшипника r2, равном 38.09 мм, при радиусе вала подшипника r1, равном 38.075 мм, максимальный размер Smax частиц в зазоре по зависимости равен

При толщине δ слоя смазки, равной 0.8 мкм, минимальном Ra1 и максимальном Ra2 значениях микронеровностей поверхности, равных соответственно 025 мкм и 0.85 мкм, минимальный размер Smin частицы в зазоре по зависимости равен

При условии средней концентрации εcp абразивных частиц, равной 0.5%, расходе смазки Qn, равном 0.1 м3/ч, плотности смазки γм, равной 0,91 Гр/см3, равенстве коэффициентов k1, k2 соответственно 0.9 и 0.95, длине подшипника l, равной 0.157 мм, плотности абразивных частиц γa, равной 2,61 Гр/см3, частоте вращения ω, равной

0.4 с-1, число na одновременно находящихся абразивных частиц в зазоре по зависимости равно

Осевой момент инерции j при диаметре рабочего вала Д, равном 76.15 мм, равен по зависимости

При объеме смазки в системе Q, равном 0.001 м3, силе Е, приложенной на частицу, равной 2,1*104 МПа, статический прогиб fcm равен по зависимости

Динамический коэффициент КД при расстоянии h динамического удара, равном 0.03 мм, равен по зависимости

Величина динамического прогиба fД равна по зависимости

Максимальный размер абразивных частиц с учетом динамического прогиба fД равен по зависимости

При статистической нагрузке Рcm, приложенной к узлу, принимаемой из условий эксплуатации равной, например, 100 МПа, величина динамической нагрузки РД равна по зависимости

При коэффициенте С формы абразивной частицы, учитывающем повышение несущей способности контакта вследствие дополнительных напряжений в перпендикулярных направлениях, равном по У.А.Икрамову 10, при пределе текучести σT стали 45 вала, равном 786 МПа, при пределе текучести σT бронзы втулки, равном 372 МПа, глубины внедрения абразивной частицы в поверхность соответственно вала и втулки равны по зависимостям

где К - установленный опытным путем эмпирический поправочный коэффициент.

Величину поправочного коэффициента К, который для разных шлаковых пылей имеет различные полученные опытным эмпирическим путем значения (Kдоменный - 0,2, Kконвертерный - 0,9, Kмартеновский - 0,4, Kгорная порода = 1), выбирают в зависимости от процентного соотношения абразивных частиц в пыли. На УПМШ рудника ГОП ОАО «ММК» в течение месяца перерабатывается 401000 тонна шлаков, в том числе 205000 т (51%) - доменного шлака, 82000 т (20.4%) - конвертерного шлака, 114000 т (28.6%) - мартеновского шлака, т.е. в зависимости от процентного соотношения переработанных шлаков в месяц коэффициент доменных шлаков

Kдоменный (при условии 51% доменного шлака) равен

Kдоменный=0.2×0.51=0.102; коэффициент конвертерных шлаков Kконвертерный (при условии 20.4% конвертерного шлака) равен

Kконвертерный=0.9×0.204=0.184; коэффициент мартеновских шлаков Kмартеновский (при условии 28.6% конвертерного шлака) равен

Kмартеновский=0.4×0.286=0.114. Исходя из этих условий поправочный коэффициент К равен

K=0.102+0.184+0.114=0.4.

При частоте вращения вала ω, равной 0.4 с-1, величине угла, ограниченного участком износа φ, равном 1.74 рад, числе циклов np2, приводящих к разрушению втулки, равном 500, износ втулки с учетом динамического нагружения и процентного содержания абразивных частиц в пыли за время Т один час работы равен по зависимости

Способ дает возможность прогнозировать износ, изменяя материал вала и втулки в сопряжении подшипников скольжения и режим работы узлов, повышать износостойкость сопряженных деталей оборудования.

Способ определения износа подшипников скольжения внедрен на УПМШ рудника ГОП ОАО «ММК». Внедрение обеспечило снижение износа, повышение прочности, надежности, эффективности работы сопряжения вал-втулка подшипникового узла, достоверности прогнозирования износа подшипников скольжения за счет достоверного, объективного расчета и моделирования процессов прогнозирования износа подшипников скольжения в зависимости от материала вала, втулки, режима работы, содержания абразивной пыли, структуры, твердости абразивных частиц и процентного соотношения различных видов абразивных частиц с учетом динамической быстро меняющейся во времени нагрузки и наличия ускорений в рассматриваемых узлах механизмов. Как видно из чертежа и табл.3, предлагаемое изобретение соответствует промышленным данным с высокой (95%) степенью вероятности.

Таблица 1
№ п/п Способ Средняя наработка узла, сутки
1 Промышленные данные 78
2 Аналог, позиция (а) 93
3 Прототип, позиция (б) 35

Таблица 2
№ п/п Схема нагружения Приложенная нагрузка Износ втулки за 1 час работы узла
1 По аналогу, позиция (а) Статистическая 31,6 мкм
2 По прототипу, позиция (б) Динамическая 54,34 мкм

Таблица 3
Схема нагружения, износ за 1 час работы, мкм Нагрузка, приложенная на узел, МПа
50 100 150 200
Статистическое нагружение по аналогу, позиция (а) 23,46 32,8 40,77 47,47
Динамическое нагружение по прототипу, позиция (б) 42,39 54,34 64,09 71,9
Динамическое нагружение с поправочным коэффициентом по заявляемому изобретению, позиция (в) 1.8 4.1 5.7 7.3
Промышленные значения, позиция (г) 1.9 4.0 5.24 6.9

Способ определения износа подшипников скольжения, включающий определение износа втулки И за один час работы, отличающийся тем, что дополнительно определяют износ втулки И  с учетом динамического нагружения и процентного содержания абразивных частиц в пыли согласно зависимости где - максимальный размер абразивных частиц с учетом динамического прогиба, f мкм;d - средний размер абразивной частицы, мкм; , - глубина внедрения абразивной частицы в поверхность соответственно вала и втулки с учетом динамической нагрузки, мкм;φ - величина угла, ограниченного участком износа, рад;n - число циклов, приводящих к разрушению втулки;S, S - соответственно максимальный и минимальный размер частиц в зазоре, мкм;l - длина подшипника, мм;R - радиус среднего размера абразивной частицы, мкм;n - число одновременно находящихся абразивных частиц в зазоре;ω - частота вращения вала, с;Т - время работы узла, ч;K - установленный опытным путем эмпирический поправочный коэффициент, величину которого выбирают в зависимости от процентного соотношения абразивных частиц в пыли;К - динамический коэффициент;f - величина динамического прогиба, мкм;Р - величина динамической нагрузки, МПа;С - коэффициент формы абразивной частицы, учитывающий повышение несущей способности контакта вследствие дополнительных напряжений в перпендикулярных направлениях;σт - предел текучести материала, МПа;δ - толщина слоя смазки, мкм;R, R - среднее значение высот микронеровностей, мкм;ε- средняя концентрация абразивных частиц в зазоре, %;Q - расход смазки, м/ч;γ - плотность смазки, г/см;k, k - коэффициенты;γ - плотность частиц, г/см;r, r - радиусы соответственно вала и втулки, мм;h - расстояние динамического удара, мм;f - величина статического прогиба, мм;P - статистическая нагрузка, нагруженная к узлу, принимаемая из условий эксплуатации, МПа;Q - объем смазки в системе, м;Е - постоянная, равная 2,1·10 Н/мм;j - осевой момент инерции;Д - диаметр рабочего вала, мм.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 161.
10.01.2013
№216.012.18f0

Способ производства низкоуглеродистой холоднокатаной тонколистовой стали

Изобретение относится к прокатному производству, в частности к изготовлению тонколистовой низкоуглеродистой холоднокатаной стали для штамповки. Заявлен способ производства холоднокатаного тонколистового проката из низкоуглеродистой стали марки DC01 толщиной 0,60…1,2 мм. Способ включает холодную...
Тип: Изобретение
Номер охранного документа: 0002471876
Дата охранного документа: 10.01.2013
27.02.2013
№216.012.29ff

Способ производства горячекатаной широкополосной стали

Изобретение предназначено для повышения потребительских свойств горячекатаного широкополосного проката в виде широкополосной стали. Способ включает горячую прокатку, ускоренное охлаждение полос с заданными температурами и с последующей смоткой их в рулоны. Повышение прочностных свойств проката...
Тип: Изобретение
Номер охранного документа: 0002476278
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2d88

Способ автоматического управления процессом прокатки в непрерывной группе клетей

Изобретение относится к области прокатки и предназначено для автоматической настройки скоростей клетей при заправке полосы в непрерывной группе листового прокатного стана. В установившемся режиме прокатки предыдущей полосы запоминают статическую просадку скорости электропривода клети, а при...
Тип: Изобретение
Номер охранного документа: 0002477187
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e10

Способ производства толстолистового низколегированного проката

Изобретение относится к области металлургии, конкретнее к прокатному производству низколегированных сталей различных классов прочности, и может быть использовано для производства готовых листов, используемых в качестве исходной заготовки для прямошовных электросварных труб большого диаметра....
Тип: Изобретение
Номер охранного документа: 0002477323
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e11

Способ производства борсодержащей стали

Изобретение относится к области черной металлургии, а именно к производству горячекатаной сортовой полосовой стали. Для получения заданного химического состава стали, обеспечения требуемой величины прокаливаемости, повышения обрабатываемости резанием и выхода годного осуществляют выплавку...
Тип: Изобретение
Номер охранного документа: 0002477324
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2e1b

Сварочная проволока из низкоуглеродистой легированной стали

Изобретение относится к области металлургии, а именно к стали, используемой при производстве сварочной проволоки. Сталь содержит компоненты при следующем соотношении, в мас.%: углерод 0,05-0,08, марганец 1,60-2,30, кремний 0,60-0,95, фосфор не более 0,015, сера не более 0,010, хром до менее...
Тип: Изобретение
Номер охранного документа: 0002477334
Дата охранного документа: 10.03.2013
27.03.2013
№216.012.30c3

Промежуточный ковш мнлз для плазменного подогрева металла

Изобретение относится к металлургии. Промежуточный ковш содержит приемный и разливочный отсеки, разделенные перегородками с переливными каналами и две камеры нагрева с крышками, выполненные между приемным и разливочными отсеками. В крышках выполнены отверстия для ввода плазматрона. В камере...
Тип: Изобретение
Номер охранного документа: 0002478021
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.3601

Флюс для центробежного литья

Изобретение относится к литейному производству и может быть использовано при центробежном литье биметаллических чугунных заготовок, например прокатных валков с рабочим слоем из легированного чугуна и сердцевиной с шейками из чугуна с шаровидным графитом. Флюс содержит, мас.%: натрий...
Тип: Изобретение
Номер охранного документа: 0002479378
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3703

Способ производства стали с низким содержанием серы

Изобретение относится к черной металлургии, в частности к способам производства стали с низким содержанием серы. Способ включает получение полупродукта в сталеплавильном агрегате, выпуск плавки в ковш, отсечку во время выпуска печного шлака, присадку в ковш при выпуске твердой шлакообразующей...
Тип: Изобретение
Номер охранного документа: 0002479636
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3720

Высокоуглеродистая сталь для производства подката для получения холоднодеформированного арматурного периодического профиля для железобетонных изделий

Изобретение относится к области металлургии и может быть использовано при производстве подката из высокоуглеродистой стали для изготовления холоднодеформированного арматурного периодического профиля. Сталь содержит компоненты в мас.%: углерод от 0,75 до менее 0,90, марганец 0,40-0,70, кремний...
Тип: Изобретение
Номер охранного документа: 0002479665
Дата охранного документа: 20.04.2013
Показаны записи 1-10 из 19.
29.12.2017
№217.015.f3b3

Комплект заливочных фланцев для изготовления теплоизолированных труб с пенополиуретановым покрытием (варианты)

Группа изобретений относится к области производства предварительно изолированных труб с тепловой изоляцией из пенополиуретана (ППУ), предназначенных для устройства трубопроводов тепловых сетей, газо- и нефтепроводов в защитной оболочке из оцинкованной стали и стали с наружным полиэтиленовым...
Тип: Изобретение
Номер охранного документа: 0002637595
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.fd1a

Опорный узел прокатного валка

Изобретение относится к области прокатного производства. Опорный узел содержит подушку с установленным в ней подшипником жидкостного трения, крышку заднюю с уплотнением, крышку переднюю с упорным подшипником, узел подвода смазки и гибкий маслопровод, соединенный с гидросистемой, узел слива...
Тип: Изобретение
Номер охранного документа: 0002638486
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.156e

Способ производства крупногабаритных толстых металлических листов или плит

Изобретение относится к области прокатного производства. Способ включает изготовление литых слябов, порезку слябов по длине, их нагрев в печи и последующую прокатку на реверсивном толстолистовом стане горячей прокатки, при этом перед нагревом в печи слябы, одинаковые по толщине и химическому...
Тип: Изобретение
Номер охранного документа: 0002634863
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1585

Способ смазки подшипников жидкостного трения прокатной клети

Изобретение относится к области прокатного производства. Способ включает подачу жидкой смазки из напорного маслопровода гидросистемы в центральную часть подшипника через отверстия в теле подушки, распределение смазки между трущимися поверхностями подшипника и слив отработанной смазки в...
Тип: Изобретение
Номер охранного документа: 0002634865
Дата охранного документа: 07.11.2017
20.02.2019
№219.016.beb8

Способ легирования сталей азотом

Изобретение относится к области металлургии, а именно к легированию сталей азотом. Способ включает выплавку металла в сталеплавильном агрегате, окисление примесей, рафинирование, раскисление и легирование, в т.ч. азотом в виде азотированного феррохрома с содержанием азота 8-12%, плотностью...
Тип: Изобретение
Номер охранного документа: 0002394107
Дата охранного документа: 10.07.2010
01.03.2019
№219.016.cb1b

Способ вакуумного рафинирования жидкой стали в ковше

Изобретение относится к черной металлургии, а именно к обработке жидкой стали в ковше. Способ включает регулирование давления над поверхностью жидкой стали и расход аргона в зависимости от содержания азота в откачиваемом газе, изменения скорости выделения оксида углерода и величины подъема...
Тип: Изобретение
Номер охранного документа: 0002348699
Дата охранного документа: 10.03.2009
29.03.2019
№219.016.ef0a

Способ обогащения сидеритовых руд

Изобретение относится к обогащению сидеритовых руд. Позволяет повысить качество концентрата за счет увеличения в нем массовой доли железа при одновременном снижении массовой доли оксида магния. Дробление и грохочение исходной руды ведут до крупности 6-00 мм, после чего перед магнетизирующим...
Тип: Изобретение
Номер охранного документа: 0002283183
Дата охранного документа: 10.09.2006
29.03.2019
№219.016.f115

Колосник спекательной тележки агломерационной конвейерной машины

Изобретение относится к конструкции колосниковой решетки спекательных тележек агломерационных и обжиговых конвейерных машин и может быть использовано в горнорудной, агломерационной, цветной и черной металлургии. Верхняя часть колосника выполнена плоской с закругленными скосами, боковые...
Тип: Изобретение
Номер охранного документа: 0002343386
Дата охранного документа: 10.01.2009
18.05.2019
№219.017.579d

Устройство для пластического обжатия канатов

Изобретение относится к канатному производству и может быть использовано при производстве пластически обжатых канатов. Устройство содержит роликовую клеть для обжатия канатов, которая располагается между ротором и вытяжным механизмом канатовьющей машины с возможностью вращения соосно ротору...
Тип: Изобретение
Номер охранного документа: 0002371533
Дата охранного документа: 27.10.2009
19.06.2019
№219.017.86de

Устройство для нанесения антикоррозионного покрытия на поверхность деталей из чугуна и стали

Изобретение относится к области нанесения металлических покрытий путем переноса материала покрытия посредством цилиндрической щетки с металлическим ворсом. Устройство для нанесения антикоррозионного покрытия содержит цилиндрическую щетку с металлическим ворсом шириной h, контактирующий с ней...
Тип: Изобретение
Номер охранного документа: 0002384654
Дата охранного документа: 20.03.2010
+ добавить свой РИД