×
29.06.2019
219.017.9cd7

СПОСОБ РАСЧЕТНОГО МОДЕЛИРОВАНИЯ АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА, СПОСОБ РАСЧЕТА АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА И МОДЕЛЬ АКТИВНОЙ ЗОНЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002315375
Дата охранного документа
20.01.2008
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к расчетному моделированию активной зоны ядерного реактора. Технический результат заключается в повышении точности результатов при расчетном моделировании активной зоны ядерного реактора, что обеспечивает повышение эффективности использования ядерного топлива при соблюдении достаточных резервов безопасности. В способе расчетного моделирования активной зоны ядерного реактора активную зону подразделяют на множество крупных ячей, при этом, по меньшей мере, одной крупной ячейке придают содержащую ее подобласть активной зоны. Эта подобласть включает упомянутую крупную ячейку и окружающую ее в горизонтальной плоскости буферную зону, содержащую, по меньшей мере, те крупные ячейки, которые непосредственно прилегают к указанной крупной ячейке. Эту подобласть подразделяют на множество мелких ячеек по величине меньших, чем крупные ячейки. На основе блока данных, соответствующего каждой крупной ячейке, на первом этапе вычислений узловым методом рассчитывают модель активной зоны. Затем на основе второго блока данных, соответствующего каждой мелкой ячейке подобласти, и с рассчитанными на первом этапе вычислений потоками по краю указанной подобласти на втором этапе вычислений узловым методом рассчитывают модель для этой подобласти. 3 н. и 6 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение касается способа расчетного моделирования активной зоны ядерного реактора.

Для экономичного расчета параметров активной зоны ядерного реактора при одновременном соблюдении достаточных резервов безопасности необходимо как можно более точно расчетным путем моделировать ее нейтронно-физические и термогидравлические свойства. Ввиду сложности происходящих в активной зоне процессов, а также неоднородности ее структурного строения закрытые решения уравнений, описывающих физические свойства активной зоны, невозможны, вследствие чего приходится прибегать к приближенным численным методам.

Известными способами расчетного моделирования реактора являются узловые (нодальные) вычислительные методы, основные принципы которых более подробно разъясняются, например, в [1] и [2]. При использовании таких методов вычислений активную зону разделяют на крупноячеистую решетку с множеством параллелепипеидальных ячеек (или боксов). Для многих случаев применения горизонтальная величина ячеек соответствует одному тепловыделяющему элементу (твэлу) или одной его четвертой части (крупная ячейка). Твэл изображают в таком случае в виде множества ячеек, расположенных друг над другом вертикально, то есть в направлении оси твэла. Таким образом, в горизонтальной плоскости образуется определенное количество ячеек, соответствующее количеству твэлов. При нейтронно-физическом моделировании ячейки называют также узлами, а при термогидравлическом моделировании - каналами. Каждая ячейка пространственно сопряжена с соседними ячейками по их граничным поверхностям через соответствующие интегральные (то есть усредненные по соответствующей граничной поверхности) потоки, например тепловой поток, нейтронный поток. Каждая ячейка характеризуется блоком данных, который в гомогенизированном представлении отражает ее средние свойства, например макроскопические узловые сечения ядерной реакции или коэффициенты гидравлического сопротивления. Этот блок данных рассчитывают выносными методами вычислений для модельно существующих в ячейках структурных условий (геометрическая структура, распределение ядерного топлива и замедлителя, возможно имеющиеся водопроводные или структурные трубы и так далее) в идеализированных краевых условиях (при нейтронно-физическом моделировании это, как правило, краевые условия симметрии, при которых соответствующий поток из ячейки является идентичным потоку, направленному в ячейку), причем указанный расчет производится посредством мелких ячеек, в частности по пин-элементам ("pin-by-pin", на уровне пин-элементов), то есть с ячейками, содержащими соответственно только один структурный элемент (топливный стержень, регулирующий стержень и т.п.) твэла, например для нейтроники с помощью спектрального кода.

Для получения в рамках крупноячеистого узлового вычислительного метода более точных данных о микроструктуре нейтронно-физических и термогидравлических условий в пределах одной крупной ячейки, то есть на уровне пин-элементов, необходимо крупноячеистые физические параметры состояния, соответственно рассчитанные для одной ячейки, например нейтронный поток, дополнительно модулировать функцией формы, которая является результатом вышеупомянутого идеализированного расчета ячейки по пин-элементам.

Для модулирования реактора нейтронно-физические и термогидравлические вычислительные методы (коды) сопряжены. Такое сопряжение осуществлено, например, для кипящего реактора в коде IQSBWR, подробно разъясняемом в [2]. Для реактора, охлаждаемого водой под давлением, из [3] известна сопряженная программная система PANBOX.

Стремление использовать ядерное топливо наиболее эффективно приводит к такой стратегии загрузки активной зоны, которая влечет за собой выраженное неоднородное осевое и радиальное распределение мощности. Кроме того, оптимизированный расчет топливных стержней или твэлов (например, осевые и радиальные ступени обогащения, неоднородности вследствие встроенных структурных элементов для улучшения перемешивания (в реакторах с водой под давлением и в кипящих реакторах), применение стержней неполной длины для предотвращения осушения в кипящих реакторах) дополнительно приводит к выраженной разнородности внутри твэлов. Для обеспечения наиболее эффективного использования ядерного топлива при соблюдении достаточных резервов безопасности к численным способам для устройств моделирования активной зоны предъявляются все более высокие требования. Упомянутые выше крупноячеистые узловые методы вычислений сталкиваются в этих условиях с пределами точности.

В принципе, возможно, производить мелкоячеистое моделирование, в частности по пин-элементам, для всей активной зоны. Такой способ для нейтронно-физического моделирования подробно разъяснен, например, в [4]. В этом способе крупноячеистые узловые методы вычислений переносят на уровень пин-элементов, то есть уменьшают ячейки до величины пин-элемента. При этом вычислительные алгоритмы в принципе могут оставаться неизменными и только число ячеек может увеличиваться.

Для типичного, применяемого в настоящее время на практике узлового моделирования реактора с водой под давлением, содержащего, например, 193 твэла, при котором активную зону разделяют в горизонтальной плоскости на 193*4 ячейки (4 ячейки на твэл) и для нейтроники устанавливают модель из двух энергетических групп, применяя при этом для электронно-физического моделирования 15 или для термогидравлического моделирования 40 осевых слоев, общее количество рассчитываемых ячеек составляет 2*4*15*193 (нейтроника) + 4*40*193 (термогидравлика) = 54*103.

При модулировании на основе пин-элементов дополнительно к увеличению количества пространственных ячеек в горизонтальной плоскости до 18*18 пин-элементов (= топливные или регулирующие стержни) на твэл требуется также увеличение количества осевых слоев как для нейтроники, так и для термогидравлики примерно до 100. Кроме того, с целью повышения точности необходимо также увеличить количество рассматриваемых энергетических групп. Если нейтроны подразделяются, например, на 15 энергетических групп, то общее количество рассчитываемых ячеек составляет приблизительно 15*324*10*193+324*100*193≈1*109. Это повышает величину задачи сопряженных нейтронно-физических и термогидравлических расчетов активной зоны на уровне пин-элементов более чем на три порядка по сравнению с практически применяемыми в настоящее время кодами. Ввиду связанного с этим большого объема вычислений известные в существующем уровне техники виды моделирования по пин-элементам являются непригодными для стандартной поддержки при расчете активной зоны.

В основу изобретения положена задача создания способа расчетного моделирования активной зоны ядерного реактора на основе пин-элементов, который при объеме вычислений, приемлемом для расчета активной зоны, позволяет получать достаточно точные результаты.

Указанная задача решается в соответствии с изобретением при помощи способа с признаками пункта 1 формулы изобретения. Согласно этим признакам активную зону сначала разделяют на множество крупных ячеек. По меньшей мере, одной крупной ячейке придают содержащую ее подобласть активной зоны, причем эта подобласть включает упомянутую крупную ячейку и окружающую ее в горизонтальной плоскости буферную зону, содержащую, по меньшей мере, те крупные ячейки, которые непосредственно прилегают к указанной крупной ячейке. Эту подобласть разделяют, в свою очередь, на множество мелких ячеек, которые мельче чем крупные ячейки. Затем на первом этапе вычислений на основе блока данных, который соответствует каждой крупной ячейке, узловым вычислительным методом рассчитывают модель активной зоны. После этого на втором этапе вычислений на основе второго блока данных, соответствующего каждой мелкой ячейке этой подобласти, и с рассчитанными на первом этапе потоками по краю указанной подобласти, узловым вычислительным методом рассчитывают модель для этой подобласти.

Иными словами: на первом этапе для всех крупных ячеек активной зоны на основе соответственно заданных для этих крупных ячеек блоков данных рассчитывают средние потоки для каждой боковой поверхности, как показано, например, в [5]. На втором этапе для подобласти активной зоны, перекрывающей выбранную крупную ячейку, с помощью заданных блоков данных, соответствующих мелким ячейкам, производят мелкоячеистые расчеты для каждой мелкой ячейки подобласти. При этом из средних потоков, вычисленных на первом этапе, задают внешние краевые условия подобласти. Иными словами: вместо мелкоячеистого рассмотрения всей активной зоны последнюю сначала моделируют посредством крупных ячеек. Это крупноячеистое моделирование предоставляет краевые условия (однопоточные условия) для выбранной подобласти активной зоны, моделируемой с этими краевыми условиями посредством мелких ячеек. Для моделирования всей активной зоны последняя расчленяется, таким образом, на расположенные внахлестку подобласти, перекрывающие рассматриваемую крупную ячейку, которая, например, геометрически образована твэлом. Эти подобласти можно моделировать независимо друг от друга посредством мелких ячеек, поскольку необходимые для их моделирования краевые условия и блоки данных известны.

Существенное преимущество способа, предложенного согласно изобретению, заключается в расчленении мелкоячеистого расчета всей активной зоны на соответствующее числу подобластей количество вычисляемых посредством мелких ячеек независимо друг от друга частных задач, которые могут быть обработаны параллельно друг другу, например компьютерной кластерной системой с параллельными процессорами, число которых соответствует указанному количеству. Другое преимущество такого принципа решения следует усматривать в том, что он ограничивается подобластями активной зоны, особенно критическими для точности решения, и позволяет дополнительно производить расчет с моделью более высокого разряда.

Под понятием "ячейка" в данной заявке понимается либо узел (для нейтронно-физического моделирования), либо канал (для термогидравлического моделирования). Замысел, лежащий в основе изобретения, применим как для нейтронно-физического моделирования, так и для термогидравлического моделирования.

В предпочтительном варианте осуществления способа буферная зона, которая окружает рассматриваемую крупную ячейку, состоит из непосредственно прилегающих к этой крупной ячейке и взаимодействующих с ней крупных ячеек. Иными словами: ширина окружающей рассматриваемую крупную ячейку буферной зоны соответствует ширине одной крупной ячейки. При этом изобретение исходит из того, что для мелкоячеистого моделирования активной зоны, предпочтительно происходящего на уровне пин-элементов, то есть с мелкими ячейками, каждая из которых определяется одним пин-элементом, достаточно подвергать мелкоячеистому, осуществляемому преимущественно по пин-элементам моделированию только те крупные ячейки, которые являются соседними с крупной ячейкой и находятся с ней во взаимодействии, поскольку степень взаимодействия между крупными ячейками уменьшается по мере увеличения взаимного расстояния между ними. Иными словами: далеко отстоящие друг от друга крупные ячейки воспринимают друг друга только в отношении их "усредненных" свойств. Тонкие структуры внутри крупной ячейки, определенные при расчете по пин-элементам, играют при рассмотрении далеко отстоящей от нее крупной ячейки лишь такую роль, которой можно пренебречь.

Когда крупная ячейка в горизонтальной плоскости поперечного сечения образована полным твэлом, то (если принять во внимание только непосредственно прилегающие крупные ячейки) предпочтительная подобласть представляет собой тепловыделяющую сборку 3×3. В реакторах, охлаждаемых водой под давлением, подобласть включает в таком случае как для нейтроники, так и для термогидравлики девять крупных ячеек (узлов или каналов).

В кипящих реакторах ситуация иная, поскольку в них твэлы содержат кожух, вследствие чего термогидравлическое взаимодействие между горизонтальными крупными ячейками, которые в этом случае обозначаются как каналы, ограничено ячейками или каналами, расположенными внутри твэла. Это позволяет разделить термогидравлическую 3×3 - задачу на 9 независимых частных задач.

На основе разъясненного ранее численного примера при таком образе действий объем вычислений при расчете по пин-элементам "pin-by-pin" возрастает в девять раз с 1*108 до (1+15)*324*100*193*9≈9*108. Однако этот рост компенсируется за счет возможного теперь расчленения общей задачи на 193 независимых, параллельно вычисляемых частных задач, величина которых, соответственно отнесенная к охватывающему всю активную зону исходному принципу расчета по пин-элементам, уменьшается в двадцать раз и тем самым во многих отношениях проще контролируется. Сокращается, кроме того, даже общий объем вычислений всех частных задач по сравнению с объемом вычислений общей задачи, если объем вычислений применяемого алгоритма решения возрастает с величиной задачи примерно более чем квадратично.

При применении крупноячеистого узлового способа, в котором твэл реакторов, охлаждаемых водой под давлением, в горизонтальной плоскости делится как для нейтроники, так и для термогидравлики на четыре крупных ячейки (узлы или каналы), рассматриваемая подобласть включает в горизонтальном слое 16 крупных ячеек (узлов или каналов), четыре из которых образуют рассматриваемый твэл, окруженный буферной зоной с 12 крупными ячейками (узлами или каналами), ширина которых соответствует половине ширины твэла.

В особенно предпочтительном усовершенствованном варианте способа второй этап вычислений проводится вместе с первым этапом вычислений неоднократно, причем для каждого нового проведения второго этапа вычислений используются рассчитанные для соответствующих подобластей на предыдущем первом этапе вычислений потоки по краю данной подобласти, в то время как для последующего первого этапа вычислений определяются узловые блоки данных из второго этапа вычислений. Благодаря этому повышается, с одной стороны, точность выявленной узловой модели активной зоны, а, с другой стороны, сходимость итеративных решений дополнительно служит признаком надежности способа.

Ниже изобретение поясняется с помощью чертежей, на которых

фиг.1 показывает фрагмент активной зоны, в котором один узел образует горизонтальный слой всего твэла;

фиг.2 - фрагмент активной зоны, в котором горизонтальный слой всего твэла образован четырьмя узлами.

Согласно фиг.1 активная зона 1 ядерного реактора разделена для моделирования в соответствии с изобретением на множество крупных ячеек 2 (узлов или каналов), каждая из которых в примере выполнения образована простирающимся в осевом направлении (перпендикулярно плоскости чертежа) участком (слоем) всего твэла 4, при этом в примере осуществления предусмотрено 100 таких участков. На основе такого разделения, охватывающего всю активную зону, определяются необходимые для характеристики физических свойств активной зоны 1 параметры, например узловым мультигрупповым методом для нейтронно-физического моделирования, например методом NEM (/1/). В представленном примере выполнения, пригодном, в частности, для моделирования реактора, охлаждаемого водой под давлением, крупные ячейки 2 (каналы), применяемые для термогидравлического расчета, совпадают с крупными ячейками 2 (узлами), применяемыми для нейтронно-физического расчета. Более того, крупные ячейки 2 для нейтронно-физического и термогидравлического расчета могут иметь также и различное разделение. Так для кипящего реактора целесообразно для термогидравлического изображения твэла применять в горизонтальном слое 3 каналы.

Каждая крупная ячейка 2 содержит множество мелких ячеек 6, которые предпочтительно представляют собой пин-элементы, то есть элементы внутри твэла, например топливные стержни, регулирующие стержни, трубы для отвода регулирующих стержней, водопроводные трубы и так далее, которые физически рационально объединить в субблок.

Каждой крупной 2 ячейке придают содержащую ее подобласть 8 активной зоны 1, причем эта подобласть 8 включает упомянутую крупную ячейку 2 и окружающую ее в горизонтальной плоскости буферную зону 10, содержащую, по меньшей мере, те крупные ячейки 2, которые непосредственно прилегают к этой крупной ячейке 2. Указанная буферная зона 10 в примере выполнения образована ячейками, непосредственно прилегающими к внутренней ячейке 2, и соответствует, таким образом, ширине твэла.

Вышеназванная подобласть 8 поделена на части множеством мелких ячеек 2. Таким образом, образуется определенное, соответствующее числу крупных ячеек 2 количество подобластей 8, которые расположены внахлестку. Иными словами: активная зона 1 делится на определенное количество расположенных внахлестку подобластей 8, соответствующее числу твэлов 4.

Как разъяснялось ранее, каждой крупной ячейке 2 придан блок данных, на основе которого на первом этапе вычислений производится крупноячеистый нейтронно-физический и термогидравлический расчет всей активной зоны 1 одним из вышеуказанных узловых методов, например для активной зоны реактора, охлаждаемого водой под давлением, с использованием кодов, известных под фирменным названием "PANBOX" с "COBRA" или для активной зоны кипящего реактора с использованием кодов "MIKROBURN-B2" с "COBRA", при этом в принципе может быть применен любой квалифицированный узловой метод расчета.

Вслед за этим на втором этапе вычислений на основе второго блока данных, соответствующего каждой мелкой ячейке 6 подобласти 8, и с рассчитанными на первом этапе вычислений интегральными, то есть отнесенными ко всей крупной ячейке 2 средними потоками J по краю указанной подобласти 8, узловым методом вычислений рассчитывают модель для этой подобласти 8. При этом отнесенные ко всей крупной ячейке 2 интегральные потоки J с заданной функцией формы, учитывающей конкретные условия соответствующей крупной ячейки 2, могут быть, например, разделены по отдельным мелким ячейкам 6 (пин-элементам).

Производимый на втором этапе вычислений мелкоячеистый расчет, в частности расчет по пин-элементам, приводит к точному решению для находящейся в середине подобласти 8 крупной ячейки 2 - в примере участок твэла. Буферная зона 10, образованная вокруг твэла или внутренней крупной ячейки, служит при этом для фильтрации локальных краевых условий, которые в результате крупноячеистого узлового моделирования корректны лишь приблизительно.

Подобное разделение активной зоны 1 на подобласти 8 проводится также в отношении нейтронно-физического моделирования активной зоны кипящего реактора. Однако в отличие от этого при термогидравлическом расчете посредством мелких ячеек или по пин-элементам горизонтальная буферная зона из-за отсутствия потоков массы (отсутствие поперечного обмена воды или пара) между соседними твэлами не требуется.

Надежное решение достигается в том случае, когда локальные решения на мелкоячеистом уровне и глобальное решение на крупноячеистом уровне при итерации между крупной и мелкой ячейкой сходятся.

В примере выполнения согласно фиг.2 при более точном крупноячеистом узловом моделировании реактора, охлаждаемого водой под давлением, твэл 4 разделяют для нейтроники и термогидравлики на четыре крупных ячейки 2 (узлы или каналы).

Подобласть 8 в этом примере выполнения также включает только те крупные ячейки 2, которые непосредственно прилегают к твэлу 4, находящемуся в середине, так что ширина буферной зоны 10 соответствует половине ширины твэла.

При более точном крупноячеистом узловом моделировании кипящего реактора для нейтроники, как правило, сохраняется разделение: крупная ячейка (узел) на каждый твэл. Для термогидравлики каждый твэл разделяется на три крупных ячейки (каналы), при этом горизонтальная буферная зона также не требуется.

Источники информации

[1] X.Финнеман и др., Interface current techniques for multidimensional reactor calculations, Атомкернэнерги, том 30, 1977, стр.123-128.

[2] X.Финнеман, В.Гундлах, Space-tine kinetics code IQSBOX for PWR and BWR, Атомкернэнерги-Кернэнерги, том 37, 1981.

[3] Р.Беэр и др.. The code system PANBOX for PWR safety analysis, Кернтехник 57, 1992, 1 1.

[4] М.Татсуми, А.Ямамото, SCOPE 2: OBJECT-ORIENTED PARALLEL CODE FOR MULTI-GROUP DIFFUSION/TRANSPORT CALCULATIONS IN THREE-DIMENSIONAL FINE-MEHS REACTOR CORE GEOMETRY, PHYSOR 2002, Сеул, Корея, Октябрь 7-10, 2002.

[5] М.Р.Вагнер, К.Кебке, Х.-И.Винтер, A nonlinear Extension of the Nodal Expansion Method, Proc. ANS/ENS Intl. Topical Mtg., Мюнхен, ФРГ, 2, стр.43, апрель 1981.

а)активнуюзону(1)подразделяютнамножествокрупныхячеек(2);б)поменьшеймере,однойкрупнойячейке(2)придаютсодержащуюееподобласть(8)активнойзоны,причемэтаподобласть(8)включаетупомянутуюкрупнуюячейку(2)иокружающуюеевгоризонтальнойобластибуфернуюзону(10),котораясодержит,поменьшеймере,текрупныеячейки(2),которыенепосредственноприлегаюткуказаннойкрупнойячейке(2);в)подобласть(8)подразделяютнамножествомелкихячеек(6)повеличинеменьших,чемкрупныеячейки(2);г)наосновеблокаданных,соответствующегокаждойкрупнойячейке(2),напервомэтапевычисленийузловымвычислительнымметодомрассчитываютмодельактивнойзоны(1);д)наосновевторогоблокаданных,соответствующегокаждоймелкойячейке(6)подобласти(8),исрассчитанныминапервомэтапевычисленийпотоками(J)покраюуказаннойподобласти(8),навторомэтапевычисленийузловымвычислительнымметодомрассчитываютмодельдляэтойподобласти(8).1.Способрасчетногомоделированияактивнойзоны(1)ядерногореактора,включающийследующиеэтапыпроцесса:12.Способпоп.1,характеризующийсятем,чтовторойэтапвычисленийпроводитсядлявсехкрупныхячеек(2).23.Способпоп.1или2,характеризующийсятем,чтобуфернаязона(10)вокруграссматриваемойкрупнойячейки(2)состоитизнепосредственноприлегающихкэтойкрупнойячейке(2)ивзаимодействующихснейкрупныхячеек(2).34.Способпоп.1или2,характеризующийсятем,чтомелкиеячейки(2)образованыпин-элементами.45.Способпоп.1или2.характеризующийсятем,чтокрупнаяячейка(2)вгоризонтальнойплоскостипоперечногосеченияобразованаполнымтвэлом(4).56.Способпоп.1или2,характеризующийсятем,чтовгоризонтальнойплоскостипоперечногосеченияпредусмотреночетырекрупныхячейки(2)наодинтвэл(4).67.Способпоп.2,характеризующийсятем,чтовторойэтапвычисленийпроводитсявместеспервымэтапомвычисленийнеоднократно,причемдлякаждогоновогопроведениявторогоэтапавычисленийиспользуютсярассчитанныедлясоответствующихподобластей(10)напредыдущемпервомэтапевычисленийпотоки(J)покраюданнойподобласти(10).78.Способрасчетаактивнойзоны(1)ядерногореактора,вкоторомприменяетсяспособпоодномуизпредыдущихпунктовформулы.89.Модельактивнойзонысвключеннойвнеевычислительнойпрограммойдляосуществленияспособапоодномуизпп.1-6формулы.9
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
20.03.2019
№219.016.e4a4

Каталитический элемент (варианты)

Изобретение относится к каталитическому элементу для рекомбинации водорода и/или монооксида углерода кислородом для атомных электростанций. Описан каталитический элемент (1) для рекомбинации водорода и/или монооксида углерода кислородом, содержащий тело (2) катализатора с каталитической...
Тип: Изобретение
Номер охранного документа: 02232635
Дата охранного документа: 20.07.2004
+ добавить свой РИД