×
29.06.2019
219.017.9c80

Результат интеллектуальной деятельности: СПОСОБ УСТАНОВКИ И ОРИЕНТАЦИИ МОДЕЛИ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к экспериментальной аэрогазодинамике, в частности к средствам для установки и перемещения моделей различных летательных аппаратов в рабочих частях аэродинамических труб с высокими значениями скоростных напоров. Способ реализуется за счет того, что испытуемую модель устанавливают на направляющих с возможностью перемещения под действием чрезмерной нерасчетной нагрузки с помощью обтекаемой стойки и хомутов, охватывающих направляющие с усилием, которое задают и изменяют с помощью динамометрических болтов. При этом в исходном положении и при действии расчетных нагрузок обеспечивают неподвижное положение модели на направляющих. Дополнительно регулируют скорость перемещения модели по направляющим с помощью двухполостного пневмогидроцилиндра путем изменения давления газа и его дросселирования через клапан, проходное сечение которого изменяют. Технический результат заключается в предотвращении возможности разрушения моделей и повреждения подвесок и измерительных средств от чрезмерных нагрузок при запуске аэродинамической трубы или установок. 3 н. и 6 з.п. ф-лы, 5 ил.

Изобретения относятся к экспериментальной аэрогазодинамике, в частности к средствам для установки и перемещения моделей различных летательных аппаратов в рабочих частях аэродинамических труб с высокими значениями скоростных напоров и чисел Re, реализующихся, например, в импульсных трубах, ударных, поршневых установках или трубах адиабатического сжатия. Основной целью изобретений является предотвращение разрушения моделей и повреждения подвесок и измерительных средств от чрезмерных нагрузок при запуске аэродинамической трубы или установки.

В трубах длительного действия для исключения перегрузок при запуске установок используют различные устройства ввода-вывода моделей в рабочую часть, что невозможно осуществить в трубах импульсного типа, например таких, как установки адиабатического сжатия и ударные трубы.

Известны способ и устройства для закрепления моделей в аэродинамической трубе с помощью координатных устройств на обтекаемой стойке, устанавливаемой на направляющих с возможностью перемещения (например, RU 2300748 С, G01M 9/06, 2006 г., SU 1816981 А1, G01M 9/04, 1990 г., SU 849848, G01M 9/08, 1976 г., SU 378790, 1970 г., JP 3692400 В2, G01M 9/00, 2003 г.).

Однако эти известные технические решения не обеспечивают защиту модели от разрушения при высоких нагрузках, которые могут действовать при запуске труб и не предотвращают перегрузку измерительных средств (например, тензовесов от поломок).

Целью изобретения является устранение возможности повреждения (разрушения) модели и внутримодельных средств измерения (например, тензовесов) при запуске аэродинамической трубы, что особенно важно для импульсных труб, в частности для поршневых газодинамических установок многокаскадного сжатия (ПГУМКС). Кроме этого, целью изобретения является расширение экспериментальных возможностей и информативности за счет обеспечения измерений в процессе перемещения модели, когда при этом изменяются и параметры потока (скоростной напор, числа Re, температурный фактор).

На фиг.1-5 представлены схемы выполнения устройств, с помощью которых осуществляется предложенный способ установки и ориентации модели в аэродинамической трубе. На фиг.1 изображен главный вид устройства в варианте его исполнения при установке державки в двух стойках. На фиг.2 показано поперечное сечение А-А устройства с отображением исполнения стойки и узлов ее установки на направляющих и узла крепления державки в стойке. На фиг.3 показан узел сечения В частей державки, а на фиг.4 изображена схема выполнения и функционирования пластины-нивелира. На фиг.5 представлена схема выполнения пневмогидроцилиндра.

Устройство содержит балки-направляющие 1, на которых размещается одна или две стойки 2, в которых устанавливается державка 3 с закрепляемой на ней испытуемой моделью 4 или пластиной-нивелиром 5 (перед установкой модели). Каждая стойка 2 установлена на направляющих 1 с помощью узлов 6, образованных хомутами 7, силу прижатия которых к направляющим 1 регулируют с помощью динамометрических болтов 8. Внутри каждой стойки 2 оборудованы узлы 9 для закрепления державки 3 с контролируемым усилием ее удерживания в этих узлах с помощью хомутов 6 и динамометрических болтов 8 (для обеспечения перемещения державки под действием «нерасчетной» ударной нагрузки во время запуска трубы или программируемого перемещения для увеличения информативности испытаний за счет получения результатов в процессе изменения режимных параметров). Дополнительно снижение ударной нагрузки во время запуска трубы и регулирование скорости перемещения модели 4 относительно среза сопла 10 по направляющим 1 и/или за счет перемещения державки 3 относительно узлов 9 осуществляют с помощью идентичных двухполостных пневмогидроцилиндров 11 и/или 12, один из которых закреплен неподвижно (например, на основании рабочей части трубы), а его поршень 13 связан с основанием одной из стоек 2, а второй пневмогидроцилиндр (выполненный аналогично первому) закреплен на одной из стоек 2, а его поршень 13 связан с державкой 3.

Каждая стойка 2 выполнена в виде пары пилонов 14, связанных, например, с помощью соединяющей их перемычки-скобы 15 и опирающихся на направляющие 1 с помощью обжимающих их хомутов 7. При этом в плане (вид спереди) пилоны 14 и направляющие 1 образуют равнобедренный треугольник, вершина которого совмещена с осью державки 3, которую ориентируют параллельно оси сопла 10.

Державка 3 выполнена составной, части которой сочленены между собой с помощью конического соединения: конического хвостовика 16 и конуса 17, стянутых центральным резьбовым стержнем 18, что обеспечивает быструю смену ориентационного приспособления 19 на модель 4 после нивелировочных работ по совмещению оси державки 3 с линией, параллельной оси сопла 10. Хвостовик державки 3 связан со штоком пневмогидроцилиндра 12. При этом ориентационное приспособление 19 выполнено в виде пластины-нивелира, установленной на передней части державки 3 перпендикулярно ее оси с возможностью перемещения вдоль (вперед) по державке 3 и поворота вокруг ее оси для обеспечения плотного контакта со срезом сопла 10. Поперечный размер пластины-нивелира 19 превышает диаметр среза сопла 10, а ее передняя линия среза, контактирующая со срезом сопла 10, строго перпендикулярна оси державки 3.

Двухполосной пневмогидроцилиндр 11 или 12 содержит корпус 20, в котором выполнены две полости: пневматическая 21 и гидравлическая 22, заполненные соответственно газом и жидкостью. На выходе пневматической полости 21 установлен регулируемый клапан-дроссель 23. Поршень 24, установленный в гидравлической полости 22 и воздействующий на размещенную в ней жидкость с помощью штока 25, соединен, как указывалось выше, в одном из вариантов исполнения с основанием одной из стоек 2 и/или с державкой 3 (в другом варианте).

Способ установки и ориентации модели реализуется за счет того, что модель 4 закрепляют на передней части державки 3 с возможностью перемещения по направляющим 1 и/или относительно узлов 6 ее закрепления в стойке (стойках) 2 под действием нагрузок на модель 4, превышающих их критическое значение (реализующееся, например, при запуске трубы). Критическое значение нагрузки задают предварительно за счет изменения силы трения между направляющими 1 и основаниями пилонов 14 (хомутами 7) и/или сил трения между державкой 3 и узлами 9 ее закрепления в стойке (стойках) 2. Дополнительно регулируют возможность и скорость перемещения модели 4 с помощью двухполостных пневмогидроцилиндров 11 и/или 12 путем изменения давления газа во второй полости 21, а также скорости сброса противодавления за счет изменения проходного сечения клапана-дросселя 23.

Источники информации

1. Кислых В.В., Петрова О.В., Пучков В.В. «Способ адиабатического сжатия газа в аэродинамической установке». АС 972931, G01M 9/00, 1982, БИ №29, 1989 г., с.286.

2. Кислых В.В. Комплексная наземная обработка аэрогазодинамики ракет и многоразовых транспортно-космических систем на поршневых газодинамических установках многокаскадного сжатия ЦНИИмаш в условиях, максимально приближенных к натурным. // Космонавтика и ракетостроение. ЦНИИмаш, вып.2(35), 2004 г., с.63-85.

3. Kislykh V.V. Piston Gadynamic Units with Multicascade Compression. // Advanced Hypersonic Test Facilities, Edited by Frank K.L and dan E. Morren, ch 9, p.225-227, Progress in Astronavtics and Aeronavties, v.198, 2002.

4. Волов Д.В. Ж. TBT, т.44, №4, июль-август 2006 г., с.604-626.

5. SU 1037754, G01M 9/00, 22.04.83, заявка 3399900, 22.02.82.

6. RU 2300748 С1, G01M 9/06, 10.06.07 Бюллетень №16. Заявка 2005136765/28, 25.11.05. Способ определения аэродинамических сил в дозвуковых аэродинамических трубах.

7. SU 1816981 А1, G01M 9/04, 23.05.93. Бюллетень №19. Заявка 4834444/23, 05.05.90. Координатное устройство аэродинамической трубы.

8. SU 1037754, G01M 9/00, 22.04.83. Заявка 3399900/23, 22.02.82. Установка адиабатического сжатия.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 71.
25.08.2017
№217.015.b7e0

Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через...
Тип: Изобретение
Номер охранного документа: 0002614966
Дата охранного документа: 31.03.2017
26.08.2017
№217.015.d8c5

Способ защиты земли от потенциально опасного космического объекта и система для его осуществления

Изобретение относится к области космонавтики и касается защиты Земли от потенциально опасных космических объектов (ПОКО) естественного происхождения (астероидов, комет и болидов) путем изменения их орбит за счет внешнего на них воздействия. Для защиты Земли от ПОКО в качестве меры воздействия...
Тип: Изобретение
Номер охранного документа: 0002623415
Дата охранного документа: 26.06.2017
13.02.2018
№218.016.2211

Способ оценки стойкости материалов космической техники к воздействию факторов космического пространства

Изобретение относится к области испытаний полимерных материалов, входящих в состав конструкций космических аппаратов (КА). В предлагаемом способе образцы материалов экспонируют в течение заданного срока на поверхности КА, затем помещают в контейнер, который, в свою очередь, укладывают в...
Тип: Изобретение
Номер охранного документа: 0002642009
Дата охранного документа: 23.01.2018
29.05.2018
№218.016.5524

Аэродинамическая система управления гиперзвукового летательного аппарата

Изобретение относится к области ракетно-космической техники. Аэродинамическая система управления гиперзвукового летательного аппарата содержит установленные на корпусе летательного аппарата дифференциально отклоняемые аэродинамические щитки, расположенные диаметрально во взаимно...
Тип: Изобретение
Номер охранного документа: 0002654236
Дата охранного документа: 17.05.2018
25.09.2018
№218.016.8b18

Газодинамическая барокамера

Предложение относится к области экспериментальной аэрогазодинамики и может быть использовано для определения газодинамических нагрузок на модели летательных аппаратов с работающими двигателями при моделировании и экспериментальном исследовании струйного взаимодействия в процессах разделения...
Тип: Изобретение
Номер охранного документа: 0002667687
Дата охранного документа: 24.09.2018
07.12.2018
№218.016.a4f1

Устройство формирования оптимальных управляющих воздействий для обеспечения устойчивой работы сложных технических систем

Изобретение относится к вычислительной технике. Техническим результатом является снижение количества итераций при решении задачи оптимального управления надежностью методом ускоренного спуска, а также обеспечение устойчивости вычислений решения данной задачи. Предложено устройство, которое...
Тип: Изобретение
Номер охранного документа: 0002674281
Дата охранного документа: 06.12.2018
01.03.2019
№219.016.cdb3

Головной обтекатель ракеты-носителя

Изобретение относится к устройствам для улучшения аэродинамических характеристик летательных аппаратов, преимущественно ракет-носителей (РН). Предлагаемый обтекатель имеет коническую носовую часть (1), цилиндрический отсек (2), задний переходник (3) последней ступени (4) РН. Обтекатель снабжен...
Тип: Изобретение
Номер охранного документа: 0002328410
Дата охранного документа: 10.07.2008
11.03.2019
№219.016.db80

Способ нейтрализации объемного заряда ионных пучков в ионных электрических ракетных двигателях и устройство для его осуществления (варианты)

Изобретение относится к ракетно-космической технике (РКТ) и может быть использовано в ионных электрических ракетных двигателях (ЭРД). Способ основан на возбуждении с помощью вспомогательного источника энергии в автономной полости нейтрализатора газоразрядной плазмы и использовании плазмы для...
Тип: Изобретение
Номер охранного документа: 0002429591
Дата охранного документа: 20.09.2011
11.03.2019
№219.016.dbfd

Способ регулирования ионных электрических ракетных двигателей и устройство для его осуществления (варианты)

Изобретение относится к ракетно-космической технике (РКТ) и может быть использовано в ионных электрических ракетных двигателях (ЭРД) для их регулирования с целью обеспечения нормальной работы ионных ЭРД в условиях эксплуатации на космических аппаратах (КА) и орбитальных пилотируемых космических...
Тип: Изобретение
Номер охранного документа: 0002458490
Дата охранного документа: 10.08.2012
11.03.2019
№219.016.dcc5

Волоконно-оптический датчик

Изобретение относится к ракетно-космической технике и предназначено для фиксации факта облучения космического аппарата (КА) внешним источником излучения при отсутствии необходимости определения точного направления на источник излучения. Датчик содержит входную поверхность в виде полусферы с...
Тип: Изобретение
Номер охранного документа: 0002432553
Дата охранного документа: 27.10.2011
Показаны записи 1-1 из 1.
10.06.2016
№216.015.472c

Универсальная рабочая камера эйфеля аэрогазодинамической установки

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор. В рабочей камере установлена перегородка, образующая...
Тип: Изобретение
Номер охранного документа: 0002585890
Дата охранного документа: 10.06.2016
+ добавить свой РИД