×
29.06.2019
219.017.9bb2

Результат интеллектуальной деятельности: СПОСОБ ВНЕПЕЧНОЙ ОБРАБОТКИ СТАЛИ В КОВШЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к черной металлургии, конкретнее к внепечной обработке стали в ковше. Технический результат - предотвращение насыщения стали газами в процессе внепечной обработки раскислителями и уменьшение содержания неметаллических включений в стали. Способ внепечной обработки стали в ковше включает выпуск расплава из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска расплава раскислителя, легирующих и шлакообразующих материалов. В качестве раскислителя используют карбид кремния с фракцией 0,1-10 мм, содержащий 80-90 мас.% чистого карбида кремния, 2-5 мас.% свободного углерода, остальное примеси. Раскислитель подают в процессе выпуска с расходом 1-5 кг/т расплава по зависимости: Q=K (C-C)/(Si-Si). После выпуска дополнительно подают комплексный раскислитель в пределах 0,2-0,4 кг/т расплава и алюминий с расходом в пределах 0,1-1,5 кг/т расплава. Раскислитель подают по зависимости: Q=К•(C-C)/(Si-Si), где Q - расход комплексного раскислителя в процессе выпуска, кг/т; Q - расход комплексного раскислителя после выпуска, кг/т; C и C - содержание углерода в расплаве при начале выпуска и необходимое содержание углерода в готовой стали, мас.%; Si и Si - содержание кремния при начале выпуска и необходимое содержание кремния в готовой стали, мас.%; К и К - эмпирические коэффициенты, равные 1,6-10,0 и 0,33-8,0 соответственно, кг/т. Затем расплав легируют алюминием в виде катанки с расходом в пределах 0,3=0,7 кг/т расплава и продувают аргоном в течение 1-15 мин с расходом 0,5-2,0 л/мин на тонну. 1 табл.

Изобретение относится к черной металлургии, конкретнее к внепечной обработке выплавленной стали в ковше при помощи комплексных раскислителей.

Наиболее близким по технической сущности является способ внепечной обработки стали в ковше при помощи комплексных раскислителей в виде силикомарганца, силикохрома, ферросиликокальция. Расходы комплексных раскислителей определяются химическим составом выплавляемой стали /Явойский В.И. "Неметаллические включения и свойства стали". стр.109-113. Издательство "Металлургия". 1980 г. , Явойский В.И. и др. "Включения и газы в сталях". стр. 94-96, Издательство "Металлургия". 1970 г./.

Недостатком известного способа является невозможность предотвращения насыщения стали водородом и азотом из атмосферы. Кроме того, при этом в сталь вносится водород и азот из самих комплексных раскислителей. В этих условиях требуется дополнительная специальная обработки в виде, например, вакуумирования или противофлокенной обработки. При этом образующиеся неметаллические включения не полностью удаляются из обработанной стали.

Технический результат при использовании изобретения заключается в предотвращении насыщения стали газами в процессе внепечной обработки раскислителями и уменьшении содержания неметаллических включений в стали.

Указанный технический результат достигают тем, что способ внепечной обработки стали в ковше включает выпуск расплава из сталеплавильного агрегата в ковш, подачу в ковш в процессе выпуска расплава раскислителя, легирующих и шлакообразующих материалов, отличающийся тем, что в качестве раскислителя используют карбид кремния с фракцией 0,1-10 мм, содержащий 80-90 мас.% чистого карбида кремния, 2-5 мас.% свободного углерода, остальное примеси, раскислитель подают в процессе выпуска с расходом 1-5 кг/т расплава по зависимости:

После выпуска дополнительно подают комплексный раскислитель в пределах 0,2-0,4 кг/т расплава и алюминий с расходом в пределах 0,1-1,5 кг/т расплава, при этом комплексный раскислитель подают по зависимости:

где Q1 - расход раскислителя в процессе выпуска, кг/т;
Q2 - расход раскислителя после выпуска, кг/т;
C1 и С2 - содержание углерода в расплаве при начале выпуска и необходимое содержание углерода в готовой стали, мас.%;
Si1 и Si2 - содержание кремния при начале выпуска и необходимое содержание кремния в готовой стали, мас.%;
К1 и К2 - эмпирические коэффициенты, характеризующие физико-химические закономерности при раскислении стали, равные 1,6-10,0 и 0,33-8,0 соответственно, кг/т, после чего расплав легируют алюминием в виде катанки с расходом в пределах 0,3-0,7 кг/т расплава и продувают аргоном в течение 1-15 минут с расходом 0,5-2,0 л/мин на тонну.

Предотвращение насыщения стали газами в процессе внепечной обработки будет происходить вследствие взаимодействия кислорода расплава с углеродом раскислителя и выделения в газовую фазу продуктов раскисления.

Уменьшение содержания неметаллических включений в стали будет происходить вследствие раскисления стали углеродом с удалением продуктов реакции раскисления в газовую фазу, при этом повышается усвоение кремния из раскислителя с образованием меньшего количества неметаллических включений.

Диапазон фракций раскислителя в пределах 0,1-10 мм объясняется закономерностями взаимодействия расплава с комплексным раскислителем при внепечной обработке. При меньших значениях будет происходить вынос раскислителя из зоны реакции, при больших значениях будут ухудшаться условия взаимодействия раскислителя с расплавом.

Диапазон содержания чистого карбида кремния в подаваемом раскислителе в пределах 80-90 мас.% объясняется физико-химическими закономерностями раскисления стали. При меньших значениях будет происходить увеличение влияния примесей на состав образующегося шлака, большие значения устанавливать экономически не целесообразно.

Диапазон значений содержания углерода в составе раскислителя в пределах 2-5 маc.% объясняется физико-химическими закономерностями раскисления стали. При меньших значениях не будет происходить необходимое снижение окисленности стали, при больших значениях будет происходить науглероживание стали сверх допустимых пределов.

Диапазоны значений расходов раскислителя в пределах 1-5 и 0,2-0,4 кг/т расплава объясняются химическим составом стали. При меньших значениях не будет происходить необходимое раскисление стали. При больших значениях не будет обеспечиваться необходимый химический состав стали.

Диапазон значений расхода алюминия в пределах 0,1-1,5 кг/т расплава объясняется физико-химическими закономерностями формирования шлака. При меньших значениях будет повышаться окисленность шлака сверх допустимых пределов. При больших значениях будет происходить проникновение водорода и азота в сталь через слой шлака.

Диапазон значений расхода алюминиевой катанки в пределах 0,3-0,7 кг/т расплава объясняется физико-химическими закономерностями легирования стали. При меньших значениях не будет происходить необходимое легирование стали. При больших значениях будет происходить перерасход алюминиевой катанки.

Диапазон значений расхода аргона в пределах 0,5-2,0 л/мин на тонну объясняется гидрокинетическими закономерностями перемешивания расплава. При меньших значениях не будет обеспечиваться необходимая эффективность перемешивания расплава. При больших значениях будет происходить переохлаждение расплава.

Диапазон значений времени продувки аргоном в пределах 1-15 минут объясняется физико-химическими закономерностями удаления неметаллических включений из расплава. При меньших значениях не будут создаваться условия для полного всплывания неметаллических включений. При больших значениях будет происходить переохлаждение расплава сверх допустимых пределов.

Диапазон значений эмпирических коэффициентов K1 и К2 в пределах: K1= 1,6-10,0 кг/т и К2= 0,33-8,0 кг/т соответственно объясняется физико-химическими закономерностями раскисления стали. При меньших значениях не будет обеспечиваться необходимое раскисление стали. При больших значениях не будет обеспечиваться необходимый химический состав стали.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "Изобретательский уровень".

Ниже дан пример осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Пример
В электродуговой печи выплавляют расплав с различным химическим составом. Расплав выпускают из печи в сталеразливочный ковш соответствующей емкости. В процессе выпуска в ковш подают раскислитель, легирующие и шлакообразующие материалы в виде извести 1,0-1,5 кг/т и плавикового шпата 0,3-0,5 кг/т.

В качестве раскислителя используют карбид кремния с фракцией 0,1-10 мм, содержащий 80-90 мас.% чистого карбида кремния, 2-5 мас.% свободного углерода, остальное примеси.

Раскислитель подают в процессе выпуска с расходом 1-5 кг/т расплава по зависимости:

После выпуска дополнительно подают комплексный раскислитель в пределах 0,2-0,4 кг/т расплава и алюминий в виде сечки с расходом в пределах 0,1-1,5 кг/т расплава, при этом комплексный раскислитель подают по зависимости:

где Q1 - расход раскислителя в процессе выпуска, кг/т;
Q2 - расход раскислителя после выпуска, кг/т;
C1 и С2 - содержание углерода в расплаве при начале выпуска и необходимое содержание углерода в готовой стали, мас.%;
Si1 и Si2 - содержание кремния при начале выпуска и необходимое содержание кремния в готовой стали, мас.%;
К1 и К2 - эмпирические коэффициенты, характеризующие физико-химические закономерности при раскислении стали, равные 1,6-10,0 и 0,33-8,0 соответственно, кг/т, после чего расплав легируют алюминием в виде катанки с расходом в пределах 0,3=0,7 кг/т расплава и продувают аргоном в течение 1-15 минут с расходом 0,5-2,0 л/мин на тонну.

В таблице приведены примеры осуществления способа с различными технологическими параметрами.

В первом примере вследствие отступления параметров от необходимых значений происходит повышение содержания газов и неметаллических включений. В пятом примере не обеспечивается необходимый химический состав стали по углероду и кремнию. В оптимальных примерах 2 и 4 устраняется прирост газов и снижается балльность неметаллических включений.

Способвнепечнойобработкисталивковше,включающийвыпускрасплаваизсталеплавильногоагрегатавковш,подачувковшвпроцессевыпускарасплавараскислителя,легирующихишлакообразующихматериалов,отличающийсятем,чтовкачествераскислителяиспользуюткарбидкремниясфракцией0,1-10мм,содержащий80-90мас.%чистогокарбидакремния,2-5мас.%свободногоуглерода,остальноепримеси,раскислительподаютвпроцессевыпускасрасходом1-5кг/трасплавапозависимости114400000006-DOC.tiftifdrawing27послевыпускадополнительноподаютраскислительвпределах0,2-0,4кг/трасплаваиалюминийсрасходомвпределах0,1-1,5кг/трасплава,приэтомраскислительподаютпозависимости114400000007-DOC.tiftifdrawing29гдеQ-расходраскислителявпроцессевыпуска,кг/т;Q-расходраскислителяпослевыпуска,кг/т;CиС-содержаниеуглеродаврасплавевначалевыпускаинеобходимоесодержаниеуглеродавготовойстали,мас.%;SiиSi-содержаниекремнияврасплавевначалевыпускаинеобходимоесодержаниекремниявготовойстали,мас.%;КиК-эмпирическиекоэффициенты,характеризующиефизико-химическиезакономерностиприраскислениистали,равные1,6-10,0и0,33-8,0соответственно,кг/т,послечегорасплавлегируюталюминиемввидекатанкисрасходомвпределах0,3-0,7кг/трасплаваипродуваютаргономвтечение1-15минсрасходом0,5-2,0л/минна1тстали.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 91.
29.06.2019
№219.017.a21b

Способ производства углеродистой или низколегированной стали для электросварных труб повышенной коррозионной стойкости

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей для электросварных труб повышенной коррозионной стойкости, которые могут быть использованы для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении среды, в...
Тип: Изобретение
Номер охранного документа: 02184155
Дата охранного документа: 27.06.2002
29.06.2019
№219.017.a22d

Способ получения биметаллического слитка

Изобретение относится к специальной электрометаллургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, состоящих из основного слоя из углеродистой, низколегированной или легированной стали и наплавленного слоя из коррозионностойкой стали,...
Тип: Изобретение
Номер охранного документа: 02193071
Дата охранного документа: 20.11.2002
29.06.2019
№219.017.a243

Способ производства листовой стали

Изобретение относится к металлургии, конкретнее к технологии изготовления стальных горячекатаных и холоднокатаных листов с высокими вытяжными свойствами для холодной штамповки. Техническое изобретение состоит в улучшении вытяжных свойств и увеличении выхода кондиционной листовой стали. Сталь,...
Тип: Изобретение
Номер охранного документа: 02197542
Дата охранного документа: 27.01.2003
10.07.2019
№219.017.aaf0

Способ производства сортового проката из легированной пружинной стали

Изобретение относится к прокатному производству и может быть использовано при горячей сортовой прокатке круглых профилей и катанки из легированной пружинной стали. Задача изобретения - повышение качества и выхода годного проката. Способ включает нагрев заготовки до температуры аустенитизации,...
Тип: Изобретение
Номер охранного документа: 0002296017
Дата охранного документа: 27.03.2007
10.07.2019
№219.017.ab04

Способ производства сортового проката

Изобретение относится к прокатному производству и может быть использовано при горячей прокатке круглых сортовых профилей из низколегированной стали, используемых для изготовления холодной объемной штамповкой крепежных изделий. Техническая задача, решаемая изобретением, состоит в повышении...
Тип: Изобретение
Номер охранного документа: 0002291205
Дата охранного документа: 10.01.2007
10.07.2019
№219.017.ab0f

Способ производства холоднокатаных полос, в том числе термообработанных, и устройство для его осуществления

Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаных полос марок 08Ю и IF-сталей, в том числе термообработанных. Задача изобретения - создание несложного и недорогого в изготовлении и эксплуатации оборудования. Согласно способу в процессе...
Тип: Изобретение
Номер охранного документа: 0002295404
Дата охранного документа: 20.03.2007
10.07.2019
№219.017.ab3e

Способ производства холоднокатаной полосы

Изобретение относится к металлургии, конкретнее к технологии прокатки и термической обработки металлов, и может быть использовано при производстве высокопрочной холоднокатаной полосы из углеродистой стали в нагартованном состоянии. Технический результат, достигаемый изобретением, состоит в...
Тип: Изобретение
Номер охранного документа: 02203965
Дата охранного документа: 10.05.2003
10.07.2019
№219.017.acd6

Способ производства толстолистового проката

Изобретение относится к области металлургии, конкретно к прокатному производству, и может быть использовано при прокатке на реверсивных станах листов для штамповки и сварки соединительных деталей магистральных и промысловых трубопроводов с последующим их термическим улучшением. Для улучшения...
Тип: Изобретение
Номер охранного документа: 0002318027
Дата охранного документа: 27.02.2008
10.07.2019
№219.017.aec7

Способ непрерывной холодной прокатки тонких полос на многоклетевом стане

Изобретение предназначено для прокатки полос на четырехклетевых широкополосных станах. При прокатке контролируют путем измерения и/или расчета по математическим моделям ряд параметров: относительные обжатия по клетям, геометрические параметры подката и готового раската, натяжения полосы между...
Тип: Изобретение
Номер охранного документа: 0002325241
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.aed8

Охлаждающая трасса круглых горячекатаных профилей

Изобретение предназначено для повышения выхода годного при горячей прокатке круглых стальных сортовых профилей, в том числе арматурных. Охлаждающая трасса содержит установленные за чистовой клетью сортопрокатного стана проходные охлаждающие секции, измеритель температуры, отводящий рольганг и...
Тип: Изобретение
Номер охранного документа: 0002320436
Дата охранного документа: 27.03.2008
Показаны записи 51-51 из 51.
Тип: Изобретение
Номер охранного документа: 0001748392
Дата охранного документа: 28.07.2020
+ добавить свой РИД