×
29.06.2019
219.017.9a89

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА МЕЖДУ ОСЬЮ ВРАЩЕНИЯ МНОГОСТЕПЕННОЙ ПЛАТФОРМЫ И ЗАДАННЫМ НАПРАВЛЕНИЕМ КООРДИНАТНОЙ ОСИ

Вид РИД

Изобретение

№ охранного документа
02243570
Дата охранного документа
27.12.2004
Аннотация: Изобретение относится к области измерения и может быть использовано для уточнения и калибровки положения измерительных осей датчиков, например, акселерометров относительно заданных координатных осей. Способ определения угла между осью вращения многостепенной платформы и заданным направлением координатной оси основан на размещении эталона на координатной плоскости платформы, на которой расположена координатная ось, установке базовой поверхности эталона перпендикулярно координатной плоскости платформы и параллельно координатной оси, выставке в плоскость горизонта оси вращения и координатной поверхности платформы, повороте платформы вместе с эталоном на угол 90°, измерении угла α между базовой поверхностью эталона и плоскостью горизонта. Этот угол является углом между осью вращения многостепенной платформы и заданным направлением координатной оси. Способ определения угла позволяет повысить точность и упростить процесс измерения. 1 ил.

Предполагаемое изобретение относится к области измерения и может быть использовано для уточнения и калибровки положения измерительных осей датчиков, например, акселерометров относительно заданных координатных осей.

Известен способ определения угла между осью вращения платформы и заданным направлением координатной оси [1], включающий определение геометрических размеров, позволяющих найти заданный угол по тригонометрическому методу с использованием тригонометрических функций.

Недостаток этого способа состоит в низкой точности определения заданного угла, так как основные геометрические размеры известны как правило с большой погрешностью и не позволяют вычислить заданный угол с требуемой точностью.

Ось вращения платформы проходит через центры симметрии двух вращающихся муфт или подшипников и физически может быть определена с погрешностью изготовления всех элементов конструкции, влияющих на точность ее расположения относительно координатной оси. Так как определить фактическое, точное направление оси вращения платформы не представляется возможным, то существующие измерительные средства не позволяют с требуемой точностью определить положение оси вращения платформы относительно координатной оси в статическом ее положении без использования дополнительных косвенных методов.

Наиболее близким техническим решением к предлагаемому способу является основанный на гониометрическом методе измерений способ определения угла между осью вращения платформы и заданным направлением координатной оси [2], основанный на определении относительно измерительной системы первого положения базовой поверхности эталона, установленного на координатную плоскость платформы, на которой расположена координатная ось, при этом базовая поверхность эталона устанавливается параллельно координатной оси и перпендикулярно координатной плоскости платформы, и второго положения базовой поверхности эталона при расположении ее параллельно оси вращения платформы, и по результатам этих измерений определяют угол между осью вращения платформы и заданным направлением координатной оси.

Недостаток этого способа состоит в том, что он предполагает известным точное направление оси вращения платформы, хотя во многих случаях это направление известно с большой погрешностью. Кроме того, известный способ измерения использует сложную оптическую измерительную систему, что значительно усложняет процесс измерения.

Задача изобретения - повышение точности определения угла между осью вращения платформы и заданным направлением координатной оси и упрощение процесса измерения.

Эта задача достигается тем, что способ определения угла между осью вращения многостепенной платформы и заданным направлением координатной оси, включающий размещение эталона на координатную плоскость платформы, на которой расположена координатная ось, установку базовой поверхности эталона перпендикулярно координатной плоскости платформы и параллельно координатной оси, предполагает выставку в плоскость горизонта оси вращения и координатной плоскости платформы, поворот платформы вместе с эталоном на угол 90° и по окончании поворота измерение угла α между базовой поверхностью эталона и плоскостью горизонта, при этом угол между осью вращения платформы и заданным направлением координатной оси равен измеренному значению угла α.

На фиг.1 приведена координатная схема, поясняющая реализацию предлагаемого способа определения угла между осью вращения многостепенной платформы и заданным направлением координатной оси. На этой схеме 1 - платформа, 2 - эталон, 3 - ось вращения платформы OB, OX -направление координатной оси, Б - базовая поверхность эталона 2, образованная линией ОХ и линией ОР, перпендикулярной координатной плоскости платформы К, OR - вторая ось вращения платформы, ОР1 и OX1 - положение соответственно линий ОР и ОХ после поворота платформы с эталоном на угол 90°, Б1 – базовая поверхность эталона, образованная линиями ОР1 и ОХ1, после поворота, α – угол между осью вращения платформы ОВ и координатной осью ОХ.

В общем случае платформа может содержать несколько степеней свободы, например две, при этом она позволяет устанавливать заданную ось вращения ОВ и направление координатной оси ОХ в плоскость горизонта (фиг.1). Выставим оси ОВ и ОХ в плоскость горизонта вращением платформы вокруг осей OВ и OR, при этом координатная плоскость платформы К займет горизонтальное положение. Осуществим поворот платформы вместе с эталоном на угол 90° вокруг оси ОВ. После поворота линия ОР займет положение ОР1, а линия ОХ - положение ОХ1. Базовая поверхность Б займет положение Б1, образованное линиями ОР1 и ОХ1. Координатная ось в процессе поворота будет двигаться по поверхности конуса, осью симметрии которого является ось вращения ОВ. Линия ОР1 расположена в плоскости горизонта и перпендикулярна оси вращения ОВ. Линия ОХ1 расположена в вертикальной плоскости и так же как и прямые ОР и ОВ перпендикулярна линии ОР1. Так как прямая ОР1 принадлежит плоскостям горизонта и Б1, то эта прямая является линией пересечения этих плоскостей. Прямые OВ и ОХ1 перпендикулярны линии пересечения плоскостей горизонта и Б1, следовательно, угол между линиями OВ и ОХ1 является углом между этими плоскостями. Этот угол равен α, так как линии ОХ и OX1 - образующие конуса. Таким образом, дальнейшие действия по определению значения угла α связаны с измерением угла между плоскостью горизонта и базовой поверхностью эталона Б1 после его поворота на угол 90°. Это измерение может быть выполнено оптическим прибором уровневого типа, например, квадрантом оптическим КО - 10 с точностью не хуже 10 угл. с.

Измерительный прибор КО - 10 представляет собой несложный малогабаритный переносной прибор, легко устанавливаемый на любую плоскость. Измерительная оптическая система, используемая в прототипе, представляет собой сложное стационарное устройство, приспособить которое к конкретной поворотной платформе представляет определенную проблему. Точность измерения угла α известным способом определяется точностью знания направления оси вращения платформы. Эта точность во многих случаях не превышает (10-20) угл. мин, что является неприемлемым. Предлагаемый способ измерения угла α не требует знания направления оси вращения платформы и обеспечивает точность измерения этого угла не хуже 10 угл. с, что значительно выше, чем при использовании известного способа.

Предлагаемая совокупность признаков в рассмотренных авторами решениях не встречалась для решения поставленной задачи и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям “новизна” и “изобретательский уровень”. В качестве элементов для реализации предлагаемого способа определения угла между осью вращения платформы и заданным направлением координатной оси используются стандартный измерительный прибор КО - 10 и эталон, изготовленный с необходимой точностью.

Литература.

1. В.Г.Савенко. Измерительная техника. Высшая школа. - М.: 1974 г., стр. 120, рис.4. 2.

2. В.Г.Савенко. Измерительная техника. Высшая школа. - М.: 1974 г., стр. 124, рис. 4.4.

Способопределенияугламеждуосьювращениямногостепеннойплатформыизаданнымнаправлениемкоординатнойоси,включающийразмещениеэталонанакоординатнойплоскостиплатформы,накоторойрасположенакоординатнаяось,установкубазовойповерхностиэталонаперпендикулярнокоординатнойплоскостиплатформыипараллельнокоординатнойоси,отличающийсятем,чтоосьвращенияикоординатнуюповерхностьплатформывыставляютвплоскостьгоризонта,затемосуществляютповоротплатформывместесэталономнаугол90°,апоокончанииповоротаизмеряютуголαмеждубазовойповерхностьюэталонаиплоскостьюгоризонта,приэтомуголмеждуосьювращенияплатформыизаданнымнаправлениемкоординатнойосиравенизмеренномузначениюуглаα.
Источник поступления информации: Роспатент

Показаны записи 271-280 из 370.
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
Показаны записи 11-13 из 13.
29.06.2019
№219.017.a20a

Способ цифровой фильтрации сигналов и цифровой фильтр для реализации этого способа

Изобретение относится к области электронной вычислительной техники, в частности к технике цифровой фильтрации, и может быть использовано при разработке цифровых фильтров высокой точности. Способ цифровой фильтрации позволяет выделить полезный сигнал в условиях действия помех и может быть...
Тип: Изобретение
Номер охранного документа: 02187883
Дата охранного документа: 20.08.2002
06.07.2019
№219.017.a92f

Прецизионный частотно-импульсный измеритель

Использование в системах, построенных на базе прецизионных частотно-импульсных измерителей. Технический результат заключается в повышении точности измерения за счет формирования уравновешивающего сигнала, точного по амплитуде и по длительности, кратной периоду кварцевого генератора....
Тип: Изобретение
Номер охранного документа: 02194997
Дата охранного документа: 20.12.2002
10.07.2019
№219.017.ab40

Прецизионный частотно-импульсный измеритель

Использование: в системах, построенных на базе прецизионных частотно-импульсных измерителей. Технический результат заключается в повышении точности измерения за счет формирования уравновешивающего сигнала, точного по амплитуде и по длительности, кратной периоду кварцевого генератора, и...
Тип: Изобретение
Номер охранного документа: 02208796
Дата охранного документа: 20.07.2003
+ добавить свой РИД