×
29.06.2019
219.017.9a50

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ И БЛОК РУЛЕВОГО ПРИВОДА (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002288439
Дата охранного документа
27.11.2006
Аннотация: Группа изобретений относится к ракетной технике и может быть использована в управляемых снарядах и ракетах комплексов высокоточного оружия. Технический результат - устранение вибрационной нагрузки на бортовые приборы системы управления ракеты при отработке рулевым приводом максимальных команд управления. Способ управления ракетой включает формирование системой управления ракеты сигнала на рулевой привод и соответствующее угловое отклонение аэродинамических рулей приводом относительно продольной оси ракеты в диапазоне между двумя максимальными значениями. В момент достижения аэродинамическими рулями максимального угла отклонения прекращают действие сигнала системы управления на рулевой привод, в котором формируют воздействие, обеспечивающее угловое отклонение аэродинамических рулей в противоположную сторону. В первом варианте блок рулевого привода содержит рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, разделенном расположенной вдоль оси рулей перегородкой на рабочие камеры, боковые стенки которых имеют сферические поверхности. Общая задняя стенка выполнена с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством. У задней стенки поднутрением боковых стенок образована промежуточная полость. При этом расстояние от оси вращения аэродинамических рулей до задней стенки и протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки выполнены величиной, определяемой из первого математического выражения. Протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке составляет величину, определяемую из второго математического выражения. Во втором варианте блок рулевого привода содержит последовательно соединенные входной сумматор, усилитель, рулевую машину и датчик обратной связи. В него введен ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления. 3 н.п. ф-лы, 3 ил.
R·sin(δ+δ)+0,5·h,гдеL-расстояниеотосивращенияаэродинамическихрулейдозаднейстенки;L-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенки;R-радиуссферическихповерхностей;δ-максимальныйуголповоротааэродинамическихрулей;δ-амплитудаавтоколебаниймеханическойсистемы"аэродинамическиерули-поршень";h-толщинапоршня,апротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенкесоставляетвеличинуL=R·sinδ-0,5·h·cosδ,гдеL-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенке.1.Способуправленияракетой,включающийформированиесистемойуправленияракетысигналанаприводаэродинамическихрулейисоответствующееугловоеотклонениеаэродинамическихрулейприводомотносительнопродольнойосиракетывдиапазонемеждудвумямаксимальнымизначениями,отличающийсятем,чтовмоментдостиженияаэродинамическимирулямимаксимальногоуглаотклоненияпрекращаютдействиесигналасистемыуправлениянарулевойпривод,вкоторомформируютвоздействие,обеспечивающееугловоеотклонениеаэродинамическихрулейвпротивоположнуюсторону.12.Блокрулевогоприводауправляемойракеты,содержащийрулевуюмашинусзакрепленнымнаосиаэродинамическихрулейпоршнемввидекоромысла,которыйустановленвкорпусе,разделенномрасположеннойвдольосирулейперегородкойнарабочиекамеры,боковыестенкикоторыхвыполненысферическими,аобщаязадняястенкавыполненасотверстиями,сообщающимирабочиекамерыспневмораспределительнымустройством,отличающийсятем,чтоузаднейстенкивыполненоподнутрениебоковыхстеноксобразованиемпромежуточнойполости,приэтомрасстояниеотосивращенияаэродинамическихрулейдозаднейстенкиипротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенкивыполненывеличиной23.Блокрулевогоприводауправляемойракеты,содержащийпоследовательносоединенныевходнойсумматор,усилитель,рулевуюмашинуидатчикобратнойсвязи,отличающийсятем,чтовкачестведатчикаобратнойсвязииспользовандатчикуглаповоротарулейивблокрулевогоприводавведенограничительнапряженияположительнойиотрицательнойвеличинсигналадатчикаобратнойсвязи,двакомпаратора,аналоговыймультиплексориформировательмаксимальныхкомандуправления,приэтомвыходдатчикаобратнойсвязисоединенсвходомограничителянапряжения,выходкоторогосоединенспервымуправляющимвходомипервымсигнальнымвходоманалоговогомультиплексораисвходамикомпараторов,выходыкоторыхсоединенысоответственносвторымитретьимуправляющимивходамианалоговогомультиплексора,причемвторойитретийсигнальныевходымультиплексорасоединенысразнополярнымивыходамиформирователямаксимальныхкомандуправления,авыходаналоговогомультиплексора-свторымвходомсумматора.3" class = "blcSndTextValline">

Предлагаемые изобретения относятся к ракетной технике и могут быть использованы в управляемых снарядах и ракетах комплексов высокоточного оружия.

Известен способ управления ракетой с 4-мя аэродинамическими рулями, в котором один из рулей поддерживают в свободном состоянии по потоку или фиксируют под определенным углом. С помощью двух из оставшихся рулей обеспечивают движение вокруг осей тангажа, рыскания и крена, а последний руль фиксируют под нулевым углом (патент Японии №6033996, МПК F 42 B 15/00). При этом сформированный системой управления ракеты сигнал преобразуется рулевым приводом в соответствующее угловое отклонение двух рулей относительно продольной оси ракеты в диапазоне между двумя максимальными значениями. Величина максимального угла отклонения аэродинамического руля выбирается из условия обеспечения требуемой перегрузки управления при минимизации аэродинамической нагрузки на рулевой привод.

Наиболее близок к заявляемому способу по осуществлению и достигаемому эффекту принятый за прототип способ управления вращающимся снарядом (ракетой), в котором последовательным попарным раскрытием и приведением в действие противоположных относительно продольной оси снаряда аэродинамических рулей в моменты достижения снарядом заданной скорости полета обеспечивают его аэродинамическую устойчивость и управляемость в широком диапазоне изменения скорости полета (патент России №2166727, МПК F 42 B 15/01). Вместе с тем, как и в приведенном выше, в этом способе собственно управление снарядом осуществляется по сформированным его системой управления сигналам за счет отклонения аэродинамических рулей относительно продольной оси снаряда в диапазоне между двумя максимальными значениями.

Наиболее близок к первому варианту заявляемого устройства по конструкции и достигаемому эффекту блок рулевого привода управляемого снаряда, содержащий рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, имеющем внутренние боковые стенки в виде сферических поверхностей и разделенном на рабочие камеры перегородкой, расположенной вдоль оси рулей, и имеющем заднюю стенку с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством (патент России №2066834, МПК F 42 B 15/00).

Наиболее близок ко второму варианту заявляемого устройства по конструкции и достигаемому эффекту электрогидравлический рулевой привод, содержащий усилитель с входным сумматором, рулевую машину с распределительным устройством и силовым гидроцилиндром, датчик обратной связи (Б.Г.Крымов, Л.В.Рабинович, В.Г.Стеблецов. Исполнительные устройства систем управления летательными аппаратами. Москва, Машиностроение, 1987, с.36, рис.2.3).

Известные способы управления предполагают наличие в реализующих эти способы устройствах механических ограничителей угла поворота аэродинамических рулей. В рассмотренных устройствах функции таких ограничителей выполняют задняя стенка корпуса рулевой машины (патент России №2066834, МПК F 42 B 15/00) и торцевые стенки гидроцилиндра (Б.Г.Крымов, Л.В.Рабинович, В.Г.Стеблецов. Исполнительные устройства систем управления летательными аппаратами. Москва, Машиностроение, 1987, с.36, рис.2.3).

Рулевой привод проектируется из условия обеспечения перемещения аэродинамических рулей с требуемым быстродействием для режима наибольшей аэродинамической нагрузки (т.е. для фиксированной точки траектории полета ракеты), в котором рулевой привод развивает наибольшую мощность. Поэтому в остальных режимах мощность рулевого привода остается не востребованной, а энергия рабочего тела рулевого привода при максимальной команде управления рассеивается при ударе поршня или рулей об упор, который, как правило, жестко связан с несущими корпусными деталями конструкции ракеты. Возникающие при этом вибрации отрицательно сказываются на работе бортовых приборов точной механики (гироприборы, датчики ускорений и т.д.).

Задача заявляемых изобретений - устранение вибрационной нагрузки на бортовые приборы системы управления ракеты при отработке рулевым приводом максимальных команд управления.

Решение этой задачи в способе управления ракетой, включающем формирование системой управления ракеты сигнала на рулевой привод и соответствующее угловое отклонение аэродинамических рулей приводом относительно продольной оси ракеты в диапазоне между двумя максимальными значениями, достигается тем, что в момент достижения аэродинамическими рулями максимального угла отклонения прекращают действие сигнала системы управления на рулевой привод, в котором формируют воздействие, обеспечивающее угловое отклонение аэродинамических рулей в противоположную сторону.

Заявляемый способ предполагает отсутствие в рулевом приводе механических упоров, ограничивающих угол поворота аэродинамических рулей. При отработке максимальных команд системы управления в момент достижения аэродинамическими рулями максимального угла отклонения (±δm) и отсутствия сигнала системы управления формирование воздействия, обеспечивающего угловое отклонение аэродинамических рулей в противоположную сторону, вызывает их торможение в диапазонах угловой координаты δ≥±δm. В результате отклонение аэродинамических рулей превышает координаты ±δm на угол δΔ, величина которого зависит от соотношения развиваемого рулевым приводом момента и моментов, создаваемых действующими на него инерционной и аэродинамической нагрузками. При достижении координаты δ=±(δmΔ) аэродинамические рули начинают обратное движение, а в момент прохождения координат δ=±δm на смену дополнительного воздействия на рулевой привод вновь приходит сигнал системы управления. Аналогично происходит торможение аэродинамических рулей и изменение направления их движения при δ=±(δmΔ). Таким образом осуществляются колебания аэродинамических рулей вблизи координат δ=±δm с амплитудой δΔ. При этом высокую частоту колебаний, величина которой на 1-2 порядка больше собственной частоты ракеты, определяет быстродействие рулевого привода, что обеспечивает не влияние колебаний аэродинамических рулей вблизи координат δ=±δm на процесс управления ракетой.

Решение поставленной задачи в первом варианте блока рулевого привода, содержащего рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, разделенном расположенной вдоль оси рулей перегородкой на рабочие камеры, боковые стенки которых выполнены сферическими, а общая задняя стенка выполнена с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством, достигается тем, что у задней стенки выполнено поднутрение боковых стенок с образованием промежуточной полости. При этом расстояние от оси вращения аэродинамических рулей до задней стенки и протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки выполнены величиной

где L1 - расстояние от оси вращения аэродинамических рулей до задней стенки, L2 - протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки, R - радиус сферических поверхностей, δm - максимальный угол поворота аэродинамических рулей, δΔ - амплитуда автоколебаний механической системы "аэродинамические рули - поршень", h - толщина поршня. Протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке составляет величину

где L3 - протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке.

В прототипе (патент России №2066834, МПК F 42 B 15/00) функцию механического упора выполняет задняя стенка корпуса, которая ограничивает угол поворота (±δm) поршня, закрепленного на оси аэродинамических рулей.

В отличие от прототипа в первом варианте блока рулевого привода у задней стенки выполнено поднутрение боковых стенок с образованием промежуточной полости, увеличивающей возможный угол поворота аэродинамических рулей на величину не менее ±δΔ, что определяет зависимость (1) для расстояния L1. Протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки увеличена для обеспечения поворота поршня на угол ±(δmΔ) в пределах сферических поверхностей рабочих камер рулевой машины, что определяет зависимость (1) для расстояния L2. При этом протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке (L3) согласно зависимости (2) обеспечивает сообщение наполняемой рабочей камеры рулевой машины с промежуточной полостью при угле поворота поршня (или аэродинамических рулей) на угол δ>±δm. Следовательно, в первом варианте блока рулевого привода реализована возможность поворота аэродинамических рулей в диапазоне δ=±(δmΔ) без механического ограничения угла поворота.

Решение поставленной задачи во втором варианте блока рулевого привода, содержащего последовательно соединенные входной сумматор, усилитель, рулевую машину и датчик обратной связи, достигается тем, что в качестве датчика обратной связи использован датчик угла поворота рулей и в блок рулевого привода введен ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления. Выход датчика обратной связи соединен с входом ограничителя напряжения, выход которого соединен с первым управляющим входом и первым сигнальным входом аналогового мультиплексора и со входами компараторов, выходы которых соединены соответственно со вторым и третьим управляющими входами аналогового мультиплексора. Второй и третий сигнальные входы мультиплексора соединены с разнополярными выходами формирователя максимальных команд управления, а выход аналогового мультиплексора - со вторым входом сумматора.

В отличие от прототипа (Б.Г.Крымов, Л.В.Рабинович, В.Г.Стеблецов. Исполнительные устройства систем управления летательными аппаратами. Москва, Машиностроение, 1987, с.36, рис.2.3) во втором варианте блока рулевого привода вместо механических упоров поршня рулевой машины, функцию которых выполняют торцевые стенки гидроцилиндра, ограничение угла поворота аэродинамических рулей осуществляют включенные в цепь обратной связи рулевого привода ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления. Введенные элементы обеспечивают ограничение угла поворота аэродинамических рулей в диапазоне δ=±(δmΔ) по сигналу датчика обратной связи.

Конструкция первого варианта заявляемого устройства представлена на чертежах, где на фиг.1 и 2 приведен общий вид блока рулевого привода при нулевом (δ=0) и при максимальном (δ=δm и δ=δm±δΔ) отклонениях аэродинамических рулей.

В первом варианте устройства корпус 1 разделен задней стенкой 2 на два объема. В переднем объеме, разделенном перегородкой 3 на рабочие камеры 4 и 5 рулевой машины, на оси 6 аэродинамических рулей закреплен поршень 7, а в заднем объеме установлено распределительное устройство, состоящее из электромагнита 8 с обмотками 9 и поворотным якорем 10, на оси которого закреплена заслонка 11. Полость высокого давления 12 сообщена с рабочими камерами 4 и 5 по зазору между поршнем 7 и выполненными по сфере с радиусом R боковыми стенками корпуса 1. Рабочие камеры 4 и 5 сообщены соответственно каналами 13 и 14 с полостью низкого давления 15.

На фиг.3 представлена структурная схема второго варианта блока рулевого привода.

Второй вариант блока рулевого привода включает последовательно соединенные входной сумматор 16, усилитель 17, рулевую машину 18, датчик обратной связи 19, ограничитель напряжения 20 положительной и отрицательной величин сигнала датчика обратной связи 19, два компаратора 21 и 22, аналоговый мультиплексор 23 и формирователь максимальных команд управления 24. Выход датчика обратной связи 19 соединен с входом ограничителя напряжения 20, выход которого соединен с первым управляющим входом и первым сигнальным входом аналогового мультиплексора 23 и со входами компараторов 21 и 22, выходы которых соединены соответственно со вторым и третьим управляющими входами аналогового мультиплексора 23. Второй и третий сигнальные входы мультиплексора 23 соединены с разнополярными выходами формирователя максимальных команд управления 24, а выход аналогового мультиплексора 23 - со вторым входом сумматора 16.

Работа первого варианта устройства происходит следующим образом.

Рабочее тело - воздух из полости высокого давления 12 по зазорам между поршнем 7 и сферическими боковыми стенками поступает в рабочие камеры 4 и 5 рулевой машины, из которых по каналам 13 и 14 сбрасывается в полость низкого давления 15. Сигнал системы управления ракеты, поступающий на одну из обмоток 9 электромагнита 8, вызывает соответствующий поворот якоря 10 и заслонки 11, которая перекрывает один из каналов 13 или 14 (например, на фиг.2 заслонкой 11 перекрыт канал 14). В результате давление воздуха в рабочей камере 5 становится равным давлению воздуха в полости высокого давления 12, а в рабочей камере 4 давление воздуха становится близким к давлению в полости низкого давления 15. Из-за перепада давлений на поршень 7 в рабочей камере 4 возникает развиваемый рулевым приводом момент, под действием которого поршень 7 поворачивает ось 6 и аэродинамические рули на угол δ=δm, преодолевая действующий на аэродинамические рули пружинный шарнирный момент Мш. При дальнейшем повороте (δ>δm) поршень 7 перемещается в образованную у задней стенки 2 поднутрением сферических боковых стенок промежуточную полость, где значительно возрастает зазор между поршнем 7 и боковой стенкой корпуса 1 в месте ее поднутрения. Происходит выравнивание давлений воздуха в полости высокого давления 12 и рабочей камере 4 и, как следствие этого, резкое уменьшение развиваемого рулевым приводом момента. По инерции поршень достигает положения δ=δmΔ, в котором под действием аэродинамического шарнирного момента рулей начинает обратное движение. При δ=δm поршень выходит из промежуточной полости и наполнение рабочей камеры 4 вновь происходит по зазору между поршнем 7 и сферической боковой стенкой, что сопровождается возрастанием развиваемого рулевым приводом момента. Происходит торможение поршня 7 и изменение направления его движения при угле δ=δmΔ. Повторение описанного выше процесса вызывает автоколебания поршня 7 и аэродинамических рулей около координаты δ=δm, что определяют зависимости (1) и (2), с амплитудой δΔ, величина которой рассчитывается исходя из соотношения развиваемого рулевым приводом момента и моментов аэродинамической и инерционной нагрузки. Действие пружинного аэродинамического момента обеспечивает соответствующее положение оси вращения аэродинамических рулей.

Работа второго варианта устройства происходит следующим образом.

Уровни ограничения (+Um и -Um) ограничителя напряжения 20 настроены равными напряжениям датчика обратной связи 19, поступающими с него при углах отклонения аэродинамических рулей соответственно δ=+δm и δ=-δm. При этом напряжения срабатывания компараторов 21 и 22 также имеют величины соответственно +Um и -Um. Поэтому при достижении максимального угла поворота по сигналу ограничителя напряжения срабатывает один из компараторов 21 или 22. В зависимости от поступающих на управляющие входы сигналов аналоговый мультиплексор 23 коммутирует один из сигнальных входов с выходом по одному из трех возможных вариантов:

- в диапазоне изменения угла отклонения аэродинамических рулей -δm<δ<+δm с выхода аналогового мультиплексора 23 на сумматор 16 усилителя 17 поступает сигнал с датчика обратной связи 19, величина которого изменяется в пределах -Um<U<+Um, пропорционально углу отклонения аэродинамических рулей;

- при угле отклонения аэродинамических рулей δ≥+δm с выхода аналогового мультиплексора 23 на сумматор 16 усилителя 17 поступает сигнал -Uвх max формирователя команд 23, что обеспечивает торможение аэродинамических рулей при δ=+(δmΔ) и их движение в обратную сторону;

- при угле отклонения аэродинамических рулей δ≥-δm с выхода аналогового мультиплексора 23 на сумматор 16 усилителя 17 поступает сигнал +Uвх max формирователя команд 24, что обеспечивает торможение аэродинамических рулей при δ=-(δmΔ) и их движение в обратную сторону.

Такая логика работы мультиплексора 23 обеспечивает автоколебания аэродинамических рулей с амплитудой δΔ относительно координат δ=±δm при максимальных командах системы управления ракеты. При этом ограничение угла поворота аэродинамических рулей достигается логическим формированием сигнала управления на рулевую машину 18 без использования механических упоров.

В качестве ограничителя напряжения 20, компараторов 21 и 22, аналогового мультиплексора 23 могут быть использованы стандартные микросхемы (например, соответственно: линейный усилитель 140УД6 бКО.347.004ТУ4 с ограничением выходного сигнала, компаратор 521СА3 бКО.347.015ТУ2, аналоговый мультиплексор 564КП1 бКО.347.004ТУ2), а в качестве формирователя команд 24 - источники постоянного напряжения.

Таким образом, заявляемые способ управления ракетой и реализующие его варианты блока рулевого привода обеспечивают устранение вибрационной нагрузки на бортовые приборы системы управления ракеты за счет определенного логического формирования максимальных команд управления на рулевой привод.

L,L>R·sin(δ+δ)+0,5·h,гдеL-расстояниеотосивращенияаэродинамическихрулейдозаднейстенки;L-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенки;R-радиуссферическихповерхностей;δ-максимальныйуголповоротааэродинамическихрулей;δ-амплитудаавтоколебаниймеханическойсистемы"аэродинамическиерули-поршень";h-толщинапоршня,апротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенкесоставляетвеличинуL=R·sinδ-0,5·h·cosδ,гдеL-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенке.1.Способуправленияракетой,включающийформированиесистемойуправленияракетысигналанаприводаэродинамическихрулейисоответствующееугловоеотклонениеаэродинамическихрулейприводомотносительнопродольнойосиракетывдиапазонемеждудвумямаксимальнымизначениями,отличающийсятем,чтовмоментдостиженияаэродинамическимирулямимаксимальногоуглаотклоненияпрекращаютдействиесигналасистемыуправлениянарулевойпривод,вкоторомформируютвоздействие,обеспечивающееугловоеотклонениеаэродинамическихрулейвпротивоположнуюсторону.12.Блокрулевогоприводауправляемойракеты,содержащийрулевуюмашинусзакрепленнымнаосиаэродинамическихрулейпоршнемввидекоромысла,которыйустановленвкорпусе,разделенномрасположеннойвдольосирулейперегородкойнарабочиекамеры,боковыестенкикоторыхвыполненысферическими,аобщаязадняястенкавыполненасотверстиями,сообщающимирабочиекамерыспневмораспределительнымустройством,отличающийсятем,чтоузаднейстенкивыполненоподнутрениебоковыхстеноксобразованиемпромежуточнойполости,приэтомрасстояниеотосивращенияаэродинамическихрулейдозаднейстенкиипротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенкивыполненывеличиной23.Блокрулевогоприводауправляемойракеты,содержащийпоследовательносоединенныевходнойсумматор,усилитель,рулевуюмашинуидатчикобратнойсвязи,отличающийсятем,чтовкачестведатчикаобратнойсвязииспользовандатчикуглаповоротарулейивблокрулевогоприводавведенограничительнапряженияположительнойиотрицательнойвеличинсигналадатчикаобратнойсвязи,двакомпаратора,аналоговыймультиплексориформировательмаксимальныхкомандуправления,приэтомвыходдатчикаобратнойсвязисоединенсвходомограничителянапряжения,выходкоторогосоединенспервымуправляющимвходомипервымсигнальнымвходоманалоговогомультиплексораисвходамикомпараторов,выходыкоторыхсоединенысоответственносвторымитретьимуправляющимивходамианалоговогомультиплексора,причемвторойитретийсигнальныевходымультиплексорасоединенысразнополярнымивыходамиформирователямаксимальныхкомандуправления,авыходаналоговогомультиплексора-свторымвходомсумматора.3
Источник поступления информации: Роспатент

Показаны записи 41-50 из 438.
29.03.2019
№219.016.ef5a

Зарядное устройство к артиллерийскому выстрелу

Изобретение относится к артиллерийской технике, а именно к зарядным устройствам выстрелов раздельно-гильзового заряжания, и может быть использовано в имеющихся на вооружении всех стран мира артиллерийских орудиях с раздельно-гильзовым заряжанием. Зарядное устройство содержит гильзу, переменный...
Тип: Изобретение
Номер охранного документа: 0002246687
Дата охранного документа: 20.02.2005
29.03.2019
№219.016.efa1

Управляемый снаряд (варианты)

Изобретение относится к области вооружения. Управляемый снаряд, выполненный по аэродинамической схеме "утка", содержит цилиндрический корпус, стабилизатор и аэродинамические органы управления - рули. На носовой части корпуса перед рулем установлен кольцевой пилон, выполненный из кольцевой...
Тип: Изобретение
Номер охранного документа: 0002291381
Дата охранного документа: 10.01.2007
29.03.2019
№219.016.efbd

Ракетный двигатель твердого топлива

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива с вкладным пороховым зарядом, преимущественно многошашечным. Ракетный двигатель твердого топлива содержит камеру сгорания с вкладным пороховым зарядом и многосопловым блоком, донную и сопловую диафрагмы...
Тип: Изобретение
Номер охранного документа: 0002297546
Дата охранного документа: 20.04.2007
29.03.2019
№219.016.f005

Способ управления рулевым пневмоприводом управляемой ракеты и рулевой пневмопривод для его осуществления

Изобретение относится к области автоматики, в частности к силовым системам управления, работающим на газообразном рабочем теле, и может быть использовано при разработке рулевых приводов летательных аппаратов. Способ осуществляют следующим образом. В соответствии с сигналом управления рабочего...
Тип: Изобретение
Номер охранного документа: 0002254501
Дата охранного документа: 20.06.2005
29.03.2019
№219.016.f017

Способ коррекции командного сигнала на ракете, вращающейся по углу крена, и система наведения ракеты для его осуществления

Изобретение относится к области вооружения, а именно к ракетной технике и, в частности к ракетам, вращающимся по углу крена, и может быть использовано в системах наведения ракет, в которых применяются, например, лучевые системы наведения. Технический результат - повышение надежности за счет...
Тип: Изобретение
Номер охранного документа: 0002257523
Дата охранного документа: 27.07.2005
29.03.2019
№219.016.f019

Оптический прицел системы наведения управляемого снаряда

Изобретение относится к оптическим системам наведения управляемых снарядов и может быть использовано в системах управляемого оружия с телеориентацией в луче лазера. Технический результат - повышение надежности работы прицела за счет стабилизации мощности лазеров во всем диапазоне рабочих...
Тип: Изобретение
Номер охранного документа: 0002257524
Дата охранного документа: 27.07.2005
29.03.2019
№219.016.f024

Блок рулевого привода управляемого снаряда

Изобретение относится к области вооружения. Блок рулевого привода управляемого снаряда содержит шпангоут, рули, рулевую машину со штоком. Рулевая машина жестко закреплена со шпангоутом, на конце штока укреплено водило с отверстием, перпендикулярным оси поршня, с размещенным в нем вкладышем. Во...
Тип: Изобретение
Номер охранного документа: 0002258895
Дата охранного документа: 20.08.2005
29.03.2019
№219.016.f0cd

Стрелковое оружие

Изобретение относится к оружейной технике и может быть использовано в конструкциях различных образцов стрелкового оружия. Стрелковое оружие содержит ствол с казенником, приклад, подпружиненную затворную раму с поршнем и винтовым пазом, поворотный затвор с ответным управляющим выступом и цилиндр...
Тип: Изобретение
Номер охранного документа: 0002344361
Дата охранного документа: 20.01.2009
29.03.2019
№219.016.f0d4

Ракетный комплекс

Изобретение относится к военной технике, в частности к противотанковым ракетным комплексам. Ракетный комплекс содержит пусковую установку, в передней и задней направляющих которой выполнены пазы для взаимодействия с выступами передней и задней направляющих люльки, амортизатор и контейнер с...
Тип: Изобретение
Номер охранного документа: 0002348887
Дата охранного документа: 10.03.2009
29.03.2019
№219.016.f1d1

Способ формирования оптического поля для телеориентирования управляемых объектов, оптический прицел системы наведения управляемого снаряда и формирователь импульсов

Изобретение относится к области дистанционного управления машинами и, в частности, летательными аппаратами и предназначено для формирования оптического поля для телеориентирования управляемых объектов. Технический результат - повышение точности наведения управляемого объекта. Существо...
Тип: Изобретение
Номер охранного документа: 0002313055
Дата охранного документа: 20.12.2007
Показаны записи 41-50 из 80.
29.03.2019
№219.016.eec5

Способ контроля герметичности автопилотного блока управляемых артиллерийских снарядов и устройство для его осуществления

Изобретение относится к управляемым снарядам и ракетам, в частности к контролю герметичности их автопилотных блоков. В способе контроля герметичности автопилотный блок в выключенном состоянии со сложенными внутрь его корпуса рулями предварительно устанавливают на установочном столе, покрытом...
Тип: Изобретение
Номер охранного документа: 0002269740
Дата охранного документа: 10.02.2006
29.03.2019
№219.016.f443

Способ запуска управляемого снаряда и управляемый снаряд

Изобретение относится к ракетной технике. Снаряд содержит лидирующий кумулятивный заряд, основную боевую часть, размещенный между ними блок рулевого привода с рулями, механизм раскрытия рулей с электровоспламенителем, лопасти стабилизатора. Механизм раскрытия рулей с электровоспламенителем...
Тип: Изобретение
Номер охранного документа: 0002324142
Дата охранного документа: 10.05.2008
29.03.2019
№219.016.f65e

Способ наземных испытаний несущих поверхностей управляемого снаряда

Изобретение относится к области ракетостроения и может быть использовано для имитации аэродинамической нагрузки на раскрывающиеся несущие поверхности управляемого снаряда (УС) при наземных испытаниях. Способ наземных испытаний заключается в том, что испытуемый УС вращают относительно внешней...
Тип: Изобретение
Номер охранного документа: 0002404406
Дата охранного документа: 20.11.2010
29.03.2019
№219.016.f678

Управляемый снаряд

Изобретение относится к устройствам управляемых снарядов с тандемной кумулятивной боевой частью. Управляемый снаряд содержит тандемную боевую часть, имеющую лидирующий кумулятивный заряд (ЛКЗ) и основную боевую часть (БЧ), а также расположенное между ними устройство защиты и блок рулевого...
Тип: Изобретение
Номер охранного документа: 0002406063
Дата охранного документа: 10.12.2010
29.04.2019
№219.017.4296

Воздушно-динамический блок рулевого привода управляемого летательного аппарата

Изобретение относится к области автоматики, связанной с проектированием силовых систем управления, и может быть использовано для рулевых приводов управляемых летательных аппаратов, работающих на газообразном рабочем теле. Воздушно-динамический блок рулевого привода состоит из собранных по...
Тип: Изобретение
Номер охранного документа: 0002309084
Дата охранного документа: 27.10.2007
09.05.2019
№219.017.4ecd

Устройство передачи и воспроизведения тактильного изображения состояния ткани при эндоскопическом обследовании

Изобретение относится к медицинской технике. Устройство содержит эндоскоп с датчиками плотности ткани, причем датчиками плотности ткани являются датчики давления, тактильную матрицу, состоящую из множества ячеек, выполненных на едином общем основании и содержащих перегородки, в которые встроены...
Тип: Изобретение
Номер охранного документа: 0002425620
Дата охранного документа: 10.08.2011
09.05.2019
№219.017.503f

Устройство исследования плотности биологической ткани

Изобретение относится к медицинской технике. Устройство содержит эндоскоп с датчиками плотности ткани, установленными на торце эндоскопа с возможностью раздельной фиксации каждым датчиком плотности исследуемого участка биологической ткани и регистрации значений. Датчик плотности ткани выполнен...
Тип: Изобретение
Номер охранного документа: 0002440016
Дата охранного документа: 20.01.2012
29.05.2019
№219.017.6408

Автопилотный блок управляемого снаряда

Изобретение относится к области вооружения. Автопилотный блок управляемого снаряда содержит корпус с кольцевым выступом на внутренней поверхности, привод, скрепленный с кольцевым выступом корпуса, блок питания, включающий жгут электропроводов, скрепленный со скобой, закрепленной на корпусе...
Тип: Изобретение
Номер охранного документа: 0002289780
Дата охранного документа: 20.12.2006
29.05.2019
№219.017.6411

Управляемый снаряд

Изобретение относится к области вооружения. Управляемый снаряд содержит корпус, шпангоут со складывающимися аэродинамическими рулями, шарнирно установленными в цапфах приводных валов, механизм раскрытия и фиксации аэродинамических рулей с фиксирующими пружинами и герметизированным мембраной...
Тип: Изобретение
Номер охранного документа: 0002289782
Дата охранного документа: 20.12.2006
29.05.2019
№219.017.6433

Складной аэродинамический орган

Изобретение относится к области вооружения. Складной аэродинамический орган управляемого снаряда содержит лопасти и цилиндрические пружины, установленные по обе стороны цапфы на опорных штифтах перпендикулярно оси складывания лопасти. Поверхность цапфы выполнена в виде кулачка, снабженного...
Тип: Изобретение
Номер охранного документа: 0002284450
Дата охранного документа: 27.09.2006
+ добавить свой РИД