×
29.06.2019
219.017.9a50

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ РАКЕТОЙ И БЛОК РУЛЕВОГО ПРИВОДА (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002288439
Дата охранного документа
27.11.2006
Аннотация: Группа изобретений относится к ракетной технике и может быть использована в управляемых снарядах и ракетах комплексов высокоточного оружия. Технический результат - устранение вибрационной нагрузки на бортовые приборы системы управления ракеты при отработке рулевым приводом максимальных команд управления. Способ управления ракетой включает формирование системой управления ракеты сигнала на рулевой привод и соответствующее угловое отклонение аэродинамических рулей приводом относительно продольной оси ракеты в диапазоне между двумя максимальными значениями. В момент достижения аэродинамическими рулями максимального угла отклонения прекращают действие сигнала системы управления на рулевой привод, в котором формируют воздействие, обеспечивающее угловое отклонение аэродинамических рулей в противоположную сторону. В первом варианте блок рулевого привода содержит рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, разделенном расположенной вдоль оси рулей перегородкой на рабочие камеры, боковые стенки которых имеют сферические поверхности. Общая задняя стенка выполнена с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством. У задней стенки поднутрением боковых стенок образована промежуточная полость. При этом расстояние от оси вращения аэродинамических рулей до задней стенки и протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки выполнены величиной, определяемой из первого математического выражения. Протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке составляет величину, определяемую из второго математического выражения. Во втором варианте блок рулевого привода содержит последовательно соединенные входной сумматор, усилитель, рулевую машину и датчик обратной связи. В него введен ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления. 3 н.п. ф-лы, 3 ил.
R·sin(δ+δ)+0,5·h,гдеL-расстояниеотосивращенияаэродинамическихрулейдозаднейстенки;L-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенки;R-радиуссферическихповерхностей;δ-максимальныйуголповоротааэродинамическихрулей;δ-амплитудаавтоколебаниймеханическойсистемы"аэродинамическиерули-поршень";h-толщинапоршня,апротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенкесоставляетвеличинуL=R·sinδ-0,5·h·cosδ,гдеL-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенке.1.Способуправленияракетой,включающийформированиесистемойуправленияракетысигналанаприводаэродинамическихрулейисоответствующееугловоеотклонениеаэродинамическихрулейприводомотносительнопродольнойосиракетывдиапазонемеждудвумямаксимальнымизначениями,отличающийсятем,чтовмоментдостиженияаэродинамическимирулямимаксимальногоуглаотклоненияпрекращаютдействиесигналасистемыуправлениянарулевойпривод,вкоторомформируютвоздействие,обеспечивающееугловоеотклонениеаэродинамическихрулейвпротивоположнуюсторону.12.Блокрулевогоприводауправляемойракеты,содержащийрулевуюмашинусзакрепленнымнаосиаэродинамическихрулейпоршнемввидекоромысла,которыйустановленвкорпусе,разделенномрасположеннойвдольосирулейперегородкойнарабочиекамеры,боковыестенкикоторыхвыполненысферическими,аобщаязадняястенкавыполненасотверстиями,сообщающимирабочиекамерыспневмораспределительнымустройством,отличающийсятем,чтоузаднейстенкивыполненоподнутрениебоковыхстеноксобразованиемпромежуточнойполости,приэтомрасстояниеотосивращенияаэродинамическихрулейдозаднейстенкиипротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенкивыполненывеличиной23.Блокрулевогоприводауправляемойракеты,содержащийпоследовательносоединенныевходнойсумматор,усилитель,рулевуюмашинуидатчикобратнойсвязи,отличающийсятем,чтовкачестведатчикаобратнойсвязииспользовандатчикуглаповоротарулейивблокрулевогоприводавведенограничительнапряженияположительнойиотрицательнойвеличинсигналадатчикаобратнойсвязи,двакомпаратора,аналоговыймультиплексориформировательмаксимальныхкомандуправления,приэтомвыходдатчикаобратнойсвязисоединенсвходомограничителянапряжения,выходкоторогосоединенспервымуправляющимвходомипервымсигнальнымвходоманалоговогомультиплексораисвходамикомпараторов,выходыкоторыхсоединенысоответственносвторымитретьимуправляющимивходамианалоговогомультиплексора,причемвторойитретийсигнальныевходымультиплексорасоединенысразнополярнымивыходамиформирователямаксимальныхкомандуправления,авыходаналоговогомультиплексора-свторымвходомсумматора.3" class = "blcSndTextValline">

Предлагаемые изобретения относятся к ракетной технике и могут быть использованы в управляемых снарядах и ракетах комплексов высокоточного оружия.

Известен способ управления ракетой с 4-мя аэродинамическими рулями, в котором один из рулей поддерживают в свободном состоянии по потоку или фиксируют под определенным углом. С помощью двух из оставшихся рулей обеспечивают движение вокруг осей тангажа, рыскания и крена, а последний руль фиксируют под нулевым углом (патент Японии №6033996, МПК F 42 B 15/00). При этом сформированный системой управления ракеты сигнал преобразуется рулевым приводом в соответствующее угловое отклонение двух рулей относительно продольной оси ракеты в диапазоне между двумя максимальными значениями. Величина максимального угла отклонения аэродинамического руля выбирается из условия обеспечения требуемой перегрузки управления при минимизации аэродинамической нагрузки на рулевой привод.

Наиболее близок к заявляемому способу по осуществлению и достигаемому эффекту принятый за прототип способ управления вращающимся снарядом (ракетой), в котором последовательным попарным раскрытием и приведением в действие противоположных относительно продольной оси снаряда аэродинамических рулей в моменты достижения снарядом заданной скорости полета обеспечивают его аэродинамическую устойчивость и управляемость в широком диапазоне изменения скорости полета (патент России №2166727, МПК F 42 B 15/01). Вместе с тем, как и в приведенном выше, в этом способе собственно управление снарядом осуществляется по сформированным его системой управления сигналам за счет отклонения аэродинамических рулей относительно продольной оси снаряда в диапазоне между двумя максимальными значениями.

Наиболее близок к первому варианту заявляемого устройства по конструкции и достигаемому эффекту блок рулевого привода управляемого снаряда, содержащий рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, имеющем внутренние боковые стенки в виде сферических поверхностей и разделенном на рабочие камеры перегородкой, расположенной вдоль оси рулей, и имеющем заднюю стенку с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством (патент России №2066834, МПК F 42 B 15/00).

Наиболее близок ко второму варианту заявляемого устройства по конструкции и достигаемому эффекту электрогидравлический рулевой привод, содержащий усилитель с входным сумматором, рулевую машину с распределительным устройством и силовым гидроцилиндром, датчик обратной связи (Б.Г.Крымов, Л.В.Рабинович, В.Г.Стеблецов. Исполнительные устройства систем управления летательными аппаратами. Москва, Машиностроение, 1987, с.36, рис.2.3).

Известные способы управления предполагают наличие в реализующих эти способы устройствах механических ограничителей угла поворота аэродинамических рулей. В рассмотренных устройствах функции таких ограничителей выполняют задняя стенка корпуса рулевой машины (патент России №2066834, МПК F 42 B 15/00) и торцевые стенки гидроцилиндра (Б.Г.Крымов, Л.В.Рабинович, В.Г.Стеблецов. Исполнительные устройства систем управления летательными аппаратами. Москва, Машиностроение, 1987, с.36, рис.2.3).

Рулевой привод проектируется из условия обеспечения перемещения аэродинамических рулей с требуемым быстродействием для режима наибольшей аэродинамической нагрузки (т.е. для фиксированной точки траектории полета ракеты), в котором рулевой привод развивает наибольшую мощность. Поэтому в остальных режимах мощность рулевого привода остается не востребованной, а энергия рабочего тела рулевого привода при максимальной команде управления рассеивается при ударе поршня или рулей об упор, который, как правило, жестко связан с несущими корпусными деталями конструкции ракеты. Возникающие при этом вибрации отрицательно сказываются на работе бортовых приборов точной механики (гироприборы, датчики ускорений и т.д.).

Задача заявляемых изобретений - устранение вибрационной нагрузки на бортовые приборы системы управления ракеты при отработке рулевым приводом максимальных команд управления.

Решение этой задачи в способе управления ракетой, включающем формирование системой управления ракеты сигнала на рулевой привод и соответствующее угловое отклонение аэродинамических рулей приводом относительно продольной оси ракеты в диапазоне между двумя максимальными значениями, достигается тем, что в момент достижения аэродинамическими рулями максимального угла отклонения прекращают действие сигнала системы управления на рулевой привод, в котором формируют воздействие, обеспечивающее угловое отклонение аэродинамических рулей в противоположную сторону.

Заявляемый способ предполагает отсутствие в рулевом приводе механических упоров, ограничивающих угол поворота аэродинамических рулей. При отработке максимальных команд системы управления в момент достижения аэродинамическими рулями максимального угла отклонения (±δm) и отсутствия сигнала системы управления формирование воздействия, обеспечивающего угловое отклонение аэродинамических рулей в противоположную сторону, вызывает их торможение в диапазонах угловой координаты δ≥±δm. В результате отклонение аэродинамических рулей превышает координаты ±δm на угол δΔ, величина которого зависит от соотношения развиваемого рулевым приводом момента и моментов, создаваемых действующими на него инерционной и аэродинамической нагрузками. При достижении координаты δ=±(δmΔ) аэродинамические рули начинают обратное движение, а в момент прохождения координат δ=±δm на смену дополнительного воздействия на рулевой привод вновь приходит сигнал системы управления. Аналогично происходит торможение аэродинамических рулей и изменение направления их движения при δ=±(δmΔ). Таким образом осуществляются колебания аэродинамических рулей вблизи координат δ=±δm с амплитудой δΔ. При этом высокую частоту колебаний, величина которой на 1-2 порядка больше собственной частоты ракеты, определяет быстродействие рулевого привода, что обеспечивает не влияние колебаний аэродинамических рулей вблизи координат δ=±δm на процесс управления ракетой.

Решение поставленной задачи в первом варианте блока рулевого привода, содержащего рулевую машину с закрепленным на оси аэродинамических рулей поршнем в виде коромысла, который установлен в корпусе, разделенном расположенной вдоль оси рулей перегородкой на рабочие камеры, боковые стенки которых выполнены сферическими, а общая задняя стенка выполнена с отверстиями, сообщающими рабочие камеры с пневмораспределительным устройством, достигается тем, что у задней стенки выполнено поднутрение боковых стенок с образованием промежуточной полости. При этом расстояние от оси вращения аэродинамических рулей до задней стенки и протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки выполнены величиной

где L1 - расстояние от оси вращения аэродинамических рулей до задней стенки, L2 - протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки, R - радиус сферических поверхностей, δm - максимальный угол поворота аэродинамических рулей, δΔ - амплитуда автоколебаний механической системы "аэродинамические рули - поршень", h - толщина поршня. Протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке составляет величину

где L3 - протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке.

В прототипе (патент России №2066834, МПК F 42 B 15/00) функцию механического упора выполняет задняя стенка корпуса, которая ограничивает угол поворота (±δm) поршня, закрепленного на оси аэродинамических рулей.

В отличие от прототипа в первом варианте блока рулевого привода у задней стенки выполнено поднутрение боковых стенок с образованием промежуточной полости, увеличивающей возможный угол поворота аэродинамических рулей на величину не менее ±δΔ, что определяет зависимость (1) для расстояния L1. Протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении от задней стенки увеличена для обеспечения поворота поршня на угол ±(δmΔ) в пределах сферических поверхностей рабочих камер рулевой машины, что определяет зависимость (1) для расстояния L2. При этом протяженность сферических поверхностей от оси вращения аэродинамических рулей в направлении к задней стенке (L3) согласно зависимости (2) обеспечивает сообщение наполняемой рабочей камеры рулевой машины с промежуточной полостью при угле поворота поршня (или аэродинамических рулей) на угол δ>±δm. Следовательно, в первом варианте блока рулевого привода реализована возможность поворота аэродинамических рулей в диапазоне δ=±(δmΔ) без механического ограничения угла поворота.

Решение поставленной задачи во втором варианте блока рулевого привода, содержащего последовательно соединенные входной сумматор, усилитель, рулевую машину и датчик обратной связи, достигается тем, что в качестве датчика обратной связи использован датчик угла поворота рулей и в блок рулевого привода введен ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления. Выход датчика обратной связи соединен с входом ограничителя напряжения, выход которого соединен с первым управляющим входом и первым сигнальным входом аналогового мультиплексора и со входами компараторов, выходы которых соединены соответственно со вторым и третьим управляющими входами аналогового мультиплексора. Второй и третий сигнальные входы мультиплексора соединены с разнополярными выходами формирователя максимальных команд управления, а выход аналогового мультиплексора - со вторым входом сумматора.

В отличие от прототипа (Б.Г.Крымов, Л.В.Рабинович, В.Г.Стеблецов. Исполнительные устройства систем управления летательными аппаратами. Москва, Машиностроение, 1987, с.36, рис.2.3) во втором варианте блока рулевого привода вместо механических упоров поршня рулевой машины, функцию которых выполняют торцевые стенки гидроцилиндра, ограничение угла поворота аэродинамических рулей осуществляют включенные в цепь обратной связи рулевого привода ограничитель напряжения положительной и отрицательной величин сигнала датчика обратной связи, два компаратора, аналоговый мультиплексор и формирователь максимальных команд управления. Введенные элементы обеспечивают ограничение угла поворота аэродинамических рулей в диапазоне δ=±(δmΔ) по сигналу датчика обратной связи.

Конструкция первого варианта заявляемого устройства представлена на чертежах, где на фиг.1 и 2 приведен общий вид блока рулевого привода при нулевом (δ=0) и при максимальном (δ=δm и δ=δm±δΔ) отклонениях аэродинамических рулей.

В первом варианте устройства корпус 1 разделен задней стенкой 2 на два объема. В переднем объеме, разделенном перегородкой 3 на рабочие камеры 4 и 5 рулевой машины, на оси 6 аэродинамических рулей закреплен поршень 7, а в заднем объеме установлено распределительное устройство, состоящее из электромагнита 8 с обмотками 9 и поворотным якорем 10, на оси которого закреплена заслонка 11. Полость высокого давления 12 сообщена с рабочими камерами 4 и 5 по зазору между поршнем 7 и выполненными по сфере с радиусом R боковыми стенками корпуса 1. Рабочие камеры 4 и 5 сообщены соответственно каналами 13 и 14 с полостью низкого давления 15.

На фиг.3 представлена структурная схема второго варианта блока рулевого привода.

Второй вариант блока рулевого привода включает последовательно соединенные входной сумматор 16, усилитель 17, рулевую машину 18, датчик обратной связи 19, ограничитель напряжения 20 положительной и отрицательной величин сигнала датчика обратной связи 19, два компаратора 21 и 22, аналоговый мультиплексор 23 и формирователь максимальных команд управления 24. Выход датчика обратной связи 19 соединен с входом ограничителя напряжения 20, выход которого соединен с первым управляющим входом и первым сигнальным входом аналогового мультиплексора 23 и со входами компараторов 21 и 22, выходы которых соединены соответственно со вторым и третьим управляющими входами аналогового мультиплексора 23. Второй и третий сигнальные входы мультиплексора 23 соединены с разнополярными выходами формирователя максимальных команд управления 24, а выход аналогового мультиплексора 23 - со вторым входом сумматора 16.

Работа первого варианта устройства происходит следующим образом.

Рабочее тело - воздух из полости высокого давления 12 по зазорам между поршнем 7 и сферическими боковыми стенками поступает в рабочие камеры 4 и 5 рулевой машины, из которых по каналам 13 и 14 сбрасывается в полость низкого давления 15. Сигнал системы управления ракеты, поступающий на одну из обмоток 9 электромагнита 8, вызывает соответствующий поворот якоря 10 и заслонки 11, которая перекрывает один из каналов 13 или 14 (например, на фиг.2 заслонкой 11 перекрыт канал 14). В результате давление воздуха в рабочей камере 5 становится равным давлению воздуха в полости высокого давления 12, а в рабочей камере 4 давление воздуха становится близким к давлению в полости низкого давления 15. Из-за перепада давлений на поршень 7 в рабочей камере 4 возникает развиваемый рулевым приводом момент, под действием которого поршень 7 поворачивает ось 6 и аэродинамические рули на угол δ=δm, преодолевая действующий на аэродинамические рули пружинный шарнирный момент Мш. При дальнейшем повороте (δ>δm) поршень 7 перемещается в образованную у задней стенки 2 поднутрением сферических боковых стенок промежуточную полость, где значительно возрастает зазор между поршнем 7 и боковой стенкой корпуса 1 в месте ее поднутрения. Происходит выравнивание давлений воздуха в полости высокого давления 12 и рабочей камере 4 и, как следствие этого, резкое уменьшение развиваемого рулевым приводом момента. По инерции поршень достигает положения δ=δmΔ, в котором под действием аэродинамического шарнирного момента рулей начинает обратное движение. При δ=δm поршень выходит из промежуточной полости и наполнение рабочей камеры 4 вновь происходит по зазору между поршнем 7 и сферической боковой стенкой, что сопровождается возрастанием развиваемого рулевым приводом момента. Происходит торможение поршня 7 и изменение направления его движения при угле δ=δmΔ. Повторение описанного выше процесса вызывает автоколебания поршня 7 и аэродинамических рулей около координаты δ=δm, что определяют зависимости (1) и (2), с амплитудой δΔ, величина которой рассчитывается исходя из соотношения развиваемого рулевым приводом момента и моментов аэродинамической и инерционной нагрузки. Действие пружинного аэродинамического момента обеспечивает соответствующее положение оси вращения аэродинамических рулей.

Работа второго варианта устройства происходит следующим образом.

Уровни ограничения (+Um и -Um) ограничителя напряжения 20 настроены равными напряжениям датчика обратной связи 19, поступающими с него при углах отклонения аэродинамических рулей соответственно δ=+δm и δ=-δm. При этом напряжения срабатывания компараторов 21 и 22 также имеют величины соответственно +Um и -Um. Поэтому при достижении максимального угла поворота по сигналу ограничителя напряжения срабатывает один из компараторов 21 или 22. В зависимости от поступающих на управляющие входы сигналов аналоговый мультиплексор 23 коммутирует один из сигнальных входов с выходом по одному из трех возможных вариантов:

- в диапазоне изменения угла отклонения аэродинамических рулей -δm<δ<+δm с выхода аналогового мультиплексора 23 на сумматор 16 усилителя 17 поступает сигнал с датчика обратной связи 19, величина которого изменяется в пределах -Um<U<+Um, пропорционально углу отклонения аэродинамических рулей;

- при угле отклонения аэродинамических рулей δ≥+δm с выхода аналогового мультиплексора 23 на сумматор 16 усилителя 17 поступает сигнал -Uвх max формирователя команд 23, что обеспечивает торможение аэродинамических рулей при δ=+(δmΔ) и их движение в обратную сторону;

- при угле отклонения аэродинамических рулей δ≥-δm с выхода аналогового мультиплексора 23 на сумматор 16 усилителя 17 поступает сигнал +Uвх max формирователя команд 24, что обеспечивает торможение аэродинамических рулей при δ=-(δmΔ) и их движение в обратную сторону.

Такая логика работы мультиплексора 23 обеспечивает автоколебания аэродинамических рулей с амплитудой δΔ относительно координат δ=±δm при максимальных командах системы управления ракеты. При этом ограничение угла поворота аэродинамических рулей достигается логическим формированием сигнала управления на рулевую машину 18 без использования механических упоров.

В качестве ограничителя напряжения 20, компараторов 21 и 22, аналогового мультиплексора 23 могут быть использованы стандартные микросхемы (например, соответственно: линейный усилитель 140УД6 бКО.347.004ТУ4 с ограничением выходного сигнала, компаратор 521СА3 бКО.347.015ТУ2, аналоговый мультиплексор 564КП1 бКО.347.004ТУ2), а в качестве формирователя команд 24 - источники постоянного напряжения.

Таким образом, заявляемые способ управления ракетой и реализующие его варианты блока рулевого привода обеспечивают устранение вибрационной нагрузки на бортовые приборы системы управления ракеты за счет определенного логического формирования максимальных команд управления на рулевой привод.

L,L>R·sin(δ+δ)+0,5·h,гдеL-расстояниеотосивращенияаэродинамическихрулейдозаднейстенки;L-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенки;R-радиуссферическихповерхностей;δ-максимальныйуголповоротааэродинамическихрулей;δ-амплитудаавтоколебаниймеханическойсистемы"аэродинамическиерули-поршень";h-толщинапоршня,апротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенкесоставляетвеличинуL=R·sinδ-0,5·h·cosδ,гдеL-протяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправлениикзаднейстенке.1.Способуправленияракетой,включающийформированиесистемойуправленияракетысигналанаприводаэродинамическихрулейисоответствующееугловоеотклонениеаэродинамическихрулейприводомотносительнопродольнойосиракетывдиапазонемеждудвумямаксимальнымизначениями,отличающийсятем,чтовмоментдостиженияаэродинамическимирулямимаксимальногоуглаотклоненияпрекращаютдействиесигналасистемыуправлениянарулевойпривод,вкоторомформируютвоздействие,обеспечивающееугловоеотклонениеаэродинамическихрулейвпротивоположнуюсторону.12.Блокрулевогоприводауправляемойракеты,содержащийрулевуюмашинусзакрепленнымнаосиаэродинамическихрулейпоршнемввидекоромысла,которыйустановленвкорпусе,разделенномрасположеннойвдольосирулейперегородкойнарабочиекамеры,боковыестенкикоторыхвыполненысферическими,аобщаязадняястенкавыполненасотверстиями,сообщающимирабочиекамерыспневмораспределительнымустройством,отличающийсятем,чтоузаднейстенкивыполненоподнутрениебоковыхстеноксобразованиемпромежуточнойполости,приэтомрасстояниеотосивращенияаэродинамическихрулейдозаднейстенкиипротяженностьсферическихповерхностейотосивращенияаэродинамическихрулейвнаправленииотзаднейстенкивыполненывеличиной23.Блокрулевогоприводауправляемойракеты,содержащийпоследовательносоединенныевходнойсумматор,усилитель,рулевуюмашинуидатчикобратнойсвязи,отличающийсятем,чтовкачестведатчикаобратнойсвязииспользовандатчикуглаповоротарулейивблокрулевогоприводавведенограничительнапряженияположительнойиотрицательнойвеличинсигналадатчикаобратнойсвязи,двакомпаратора,аналоговыймультиплексориформировательмаксимальныхкомандуправления,приэтомвыходдатчикаобратнойсвязисоединенсвходомограничителянапряжения,выходкоторогосоединенспервымуправляющимвходомипервымсигнальнымвходоманалоговогомультиплексораисвходамикомпараторов,выходыкоторыхсоединенысоответственносвторымитретьимуправляющимивходамианалоговогомультиплексора,причемвторойитретийсигнальныевходымультиплексорасоединенысразнополярнымивыходамиформирователямаксимальныхкомандуправления,авыходаналоговогомультиплексора-свторымвходомсумматора.3
Источник поступления информации: Роспатент

Показаны записи 21-30 из 438.
11.03.2019
№219.016.dc87

Моноблочная пуля

Изобретение относится к боеприпасам стрелкового оружия и может быть использовано при разработке патронов для снайперских винтовок. Моноблочная пуля содержит головную, ведущую и хвостовую части. Она выполнена из стали с более низкими механическими характеристиками по пределу прочности, ударной...
Тип: Изобретение
Номер охранного документа: 0002403532
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.dc88

Способ заряжания выстрелами орудия - пусковой установки и устройство для его реализации

Изобретения относятся к области военной техники и могут найти применение в боевых машинах легкой весовой категории, имеющих ограничения по габаритам и массе. Способ заряжания выстрелами орудия - пусковой установки заключается в повороте транспортера боевого отделения, повороте орудия - пусковой...
Тип: Изобретение
Номер охранного документа: 0002403524
Дата охранного документа: 10.11.2010
11.03.2019
№219.016.de1e

Контейнер для запуска ракеты

Изобретение относится к области ракетной техники. Контейнер для запуска ракеты содержит цилиндрический корпус с закрепленной на нем с помощью упругого кольца с вырезом и ленточной пружины передней сбрасывемой крышкой. На внутренней стороне крышки напротив выреза на упругом кольце выполнен паз,...
Тип: Изобретение
Номер охранного документа: 02148774
Дата охранного документа: 10.05.2000
11.03.2019
№219.016.de20

Орудийная установка

Изобретение относится к военной технике и может быть использовано в крупнокалиберных артиллерийских установках. Техническим результатом изобретения является повышение надежности работы установки за счет полного удаления стреляных гильз за пределы бронеколпака. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 02148231
Дата охранного документа: 27.04.2000
20.03.2019
№219.016.e47b

Малогабаритный реактивный огнемет одноразового применения

Изобретение относится к военной технике и может быть использовано в конструкциях гранатометов и огнеметов одноразового применения. Огнемет содержит пусковую трубу с размещенной в ней реактивной гранатой, закрытую эластичными торцевыми крышками на дульном и казенном срезах, ударно-спусковой...
Тип: Изобретение
Номер охранного документа: 02234658
Дата охранного документа: 20.08.2004
20.03.2019
№219.016.e774

Ракета-мишень

Изобретение относится к области ракетной техники и может быть использовано на полигонах в качестве мишени для обучения стрельбе боевых расчетов зенитных ракетных комплексов, а также при демонстрационных пусках. Технический результат - упрощение конструкции зенитной РМ, повышение оперативности...
Тип: Изобретение
Номер охранного документа: 0002415372
Дата охранного документа: 27.03.2011
20.03.2019
№219.016.ea1b

Ручной привод вращающегося транспортера

Изобретение относится к военной технике, в частности к транспортерам для подачи боеприпасов к орудию. Ручной привод позволяет повысить надежность работы механизма ручного привода и уменьшить прикладываемое усилие на рукоятке. Сущность изобретения заключается в том, что он снабжен вилкой, жестко...
Тип: Изобретение
Номер охранного документа: 02165572
Дата охранного документа: 20.04.2001
20.03.2019
№219.016.ea1c

Стопор конвейера

Изобретение относится к военной технике, в частности к транспортерам для подачи боеприпасов к орудию. Изобретение позволяет повысить эксплуатационные характеристики стопора конвейера, уменьшить усилие расстопорения конвейера и снизить габариты и массу стопорного устройства. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 02165058
Дата охранного документа: 10.04.2001
20.03.2019
№219.016.ea3d

Способ наведения ракеты на цель

Изобретение относится к области ракетной техники и может быть использовано при управлении ракетами. Техническим результатом изобретения является повышение точности наведения ракеты на цель. Сущность изобретения заключается в том, что в процессе слежения за целью и ракетой определяют угловую...
Тип: Изобретение
Номер охранного документа: 02148236
Дата охранного документа: 27.04.2000
20.03.2019
№219.016.ea5e

Выбрасыватель для револьверного оружия

Изобретение относится к области оружейной техники и может быть применено в револьверном оружии. Выбрасыватель для револьверного оружия содержит качалку, установленную на барабане, извлекатель с толкателем. На качалке установлен подпружиненный выталкиватель, взаимодействующий с толкателем, для...
Тип: Изобретение
Номер охранного документа: 02188376
Дата охранного документа: 27.08.2002
Показаны записи 21-30 из 80.
20.05.2016
№216.015.3f29

Способ стрельбы управляемым снарядом с лазерной полуактивной головкой самонаведения

Изобретение относится к управлению артиллерийскими управляемыми снарядами и ракетами с лазерной полуактивной головкой самонаведения (ГСН), захватывающей подсвеченную цель на конечном участке траектории, и предназначено для управления огнем минометов и ствольной артиллерии калибров 120, 122,...
Тип: Изобретение
Номер охранного документа: 0002584210
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41b0

Способ определения угла крена бесплатформенной инерциальной навигационной системы вращающегося по крену артиллерийского снаряда

Заявленное изобретение относится к способам определения угла крена бесплатформенной инерциальной навигационной системы вращающегося по крену артиллерийского снаряда. Для определения угла крена измеряют угловые скорости снаряда в связанной со снарядом вращающейся по крену системе координат,...
Тип: Изобретение
Номер охранного документа: 0002584400
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.6365

Способ установки излучения излучателя полупроводникового лазера и устройство установки излучения излучателя полупроводникового лазера (варианты)

Способ и устройства, его реализующие, основаны на особенности излучателей полупроводниковых лазеров, заключающейся в том, что с увеличением температуры излучателя для сохранения выходных параметров (мощности, силы излучения) на требуемом для работы уровне необходимо увеличивать ток накачки...
Тип: Изобретение
Номер охранного документа: 0002589448
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.9e2f

Способ оценки параметров траектории объекта

Изобретение относится к локационной технике и предназначено для использования в системах сопровождения подвижных объектов и системах наведения ракет. Достигаемый технический результат - повышение точности оценки параметров траектории сопровождаемого объекта в условиях неопределенности динамики...
Тип: Изобретение
Номер охранного документа: 0002610831
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b188

Способ вывода ракеты в зону захвата цели головкой самонаведения и устройство для его осуществления

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия и ракетной, артиллерийской технике с головками самонаведения. Технический результат - повышение вероятности поражения целей за счет обеспечения требуемого угла подхода ракеты к плоскости...
Тип: Изобретение
Номер охранного документа: 0002613016
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.d071

Способ стрельбы управляемой ракетой

Изобретение относится к области управления и регулирования, а более конкретно - к управляемому вооружению. Задачей предлагаемого изобретения является реализация дистанционной проверки готовности ракетного комплекса к пуску и формирование разрешения на пуск за счет оценки реализуемости зон...
Тип: Изобретение
Номер охранного документа: 0002621361
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.db01

Система комбинированного рулевого привода (варианты)

Группа изобретений относится к области систем рулевых приводов летательных аппаратов, а именно к системам комбинированных рулевых приводов, содержащих рулевую машину с аэродинамическими рулями и газодинамическое устройство управления со сверхзвуковыми соплами. По первому варианту рулевая машина...
Тип: Изобретение
Номер охранного документа: 0002623762
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.defd

Автодинный приёмопередатчик системы радиозондирования атмосферы

Изобретение относится к радиотехнике, в частности к радиолокации с активным ответом, и может быть использовано в аэрологических радиозондах систем радиозондирования атмосферы для измерения наклонной дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи...
Тип: Изобретение
Номер охранного документа: 0002624993
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e40a

Многофункциональная система радиозондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано при разработке систем радиозондирования атмосферы (CP) построенных на основе применения радиолокационного метода измерения пространственных координат аэрологического радиозонда (АРЗ) и использования сигналов спутниковых...
Тип: Изобретение
Номер охранного документа: 0002626410
Дата охранного документа: 27.07.2017
+ добавить свой РИД