×
27.06.2019
219.017.9923

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНЫХ ЗАГОТОВОК ВЫСОКОМАРГАНЦЕВОЙ СТАЛИ С РЕКРИСТАЛЛИЗОВАННОЙ МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к технологии получения заготовок из высокомарганцевых сталей аустенитного класса с мелкозернистой структурой, используемых при изготовлении силовых элементов кузова автомобиля. Способ включает гомогенизационный отжиг при температуре 1423 К в течение 1 часа и горячую деформационно-термическую обработку. Указанную обработку проводят путем горячей прокатки заготовки до степени деформации 1 при температуре 1423 К и последующей термомеханической обработки путем ковки при постоянной температуре из интервала от 1073 до 1273 K с истинной степенью деформации не менее 1 при постоянной скорости деформации в интервале от 10 до 10 с с последующей мгновенной закалкой в воду. Способ позволяет получить однородную динамически рекристаллизованную мелкозернистую структуру в объемных заготовках высокомарганцевых сталей аустенитного класса с уникальным сочетанием высокой прочности и пластичности, произведение которых σ×δ составляет не менее 49 000 MПa×%. 2 ил., 1 табл., 2 пр.

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения заготовок высокомарганцевых сталей аустенитного класса с мелкозернистой структурой, и может быть применено при изготовлении силовых элементов кузова автомобиля.

На сегодняшний день одними из наиболее перспективных материалов являются высокомарганцевые аустенитные стали с TWIP эффектом (twinning induced plasticity – пластичность наведенная двойникованием), используемые в автомобильной промышленности. Стали данного класса чрезвычайно пластичны и характеризуются высоким уровнем деформационного упрочнения, что делает их привлекательными для широкого применения в автомобильной промышленности. Однако, у таких материалов есть недостаток низкий предел текучести и прочности. Известно, что этот недостаток, возможно исправить за счет пластической деформации, при которой формируется мелкозернистая структура. Для применения таких сталей в качестве материалов для конструкции силовых элементов необходимо сочетание высокой прочности и пластичности. Величина, произведения временного сопротивления до разрушения на относительное удлинение, является основной характеристикой сталей, используемых для производства транспортных средств. Уникальным сочетанием пластичности и прочности обладают материалы с ультрамелкозернистой структурой [Y. Estrin, A. Vinogradov. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (2013) 782 - 817], которую можно получить за счет протекания динамической рекристаллизации при большой пластической деформации. Ранее было издано большое количество работ по получению листового проката из сталей данного класса [Kusakin, P.S., Kaibyshev, R.O. High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties/ Reviews on Advanced Materials Science 2016, 44(4), с. 326-360], но зачастую листовой прокат не позволяет получить объемные заготовки. Для этого возможно использование других методов пластической деформации.

Известен способ получения ультрамелкозернитой высокомарганцевой стали, обладающей пределом текучести более 2 ГПа при относительном удлинении не менее 5%, отличающаяся тем, что она содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.%, марганец более 15 вес.% и алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn). Такие свойства были достигнуты после интенсивной пластической деформации методом кручения под высоким давлением. Недостатком указанного способа является низкое значение произведения пластичности и прочности обработанной стали, которое составляет 12 720 МПа×%, а также трудоемкий способ кручения под высоким давлением, который позволяет получать только мелкие образца размером: диаметр 10 мм и толщина 2,5 мм.

Наиболее близким к предлагаемому изобретению является способ получения объемных заготовок с мелкозернистой структурой в стали аустенитного класса с TWIP эффектом раскрытый в публикации [PAVEL KUSAKIN, KANEAKI TSUZAKI, DMITRI A. MOLODOV, RUSTAM KAIBYSHEV, and ANDREY BELYAKOV. Advanced Thermomechanical Processing for a High-Mn Austenitic Steel METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 47A, 2016, 5707]. Согласно способу, аустенитную сталь с TWIP эффектом химического состава Fe-0.62C-17.5Mn-1.5Al-0.03Si-0.007S-0.017P предварительно подвергали гомогенизационному отжигу в течении 5 часов при температуре 1423К, далее проводили горячую деформационно-термическую обработку при температуре 1423К с последующим отжигом в течении часа при температуре 1423 К. Далее часть образцов аустенитной стали с TWIP эффектом размером 300 мм в длину и с поперечным сечением 20×10 мм2 были подвергнуты термомеханической обработке методом многократной ковки при 873 К с последовательным изменением оси ориентации на 90°. А другая часть образцов размером 300 мм в длину и с поперечным сечением 20×10 мм2 были деформированы методом многократной ковки при температуре 673К с последовательным изменением оси ориентации на 90° и далее были подвергнуты отжигу в течении 1 часа при температуре 873 К. В обоих случаях истинная степень деформации за одну осадку составляла 0,7, суммарная степень деформации достигла 2,8. В результате чего после многократной ковки при 873 К средний размер зерна составил 17 мкм, а произведение предела прочности на удлинение σB × δ составило 24500 MPa×%. Второй режим многократной ковки при температуре 673 К и отжиге при 873 К позволил получить средний размер зерна - 2,8 мкм, а произведение предела прочности на удлинение составило 62100 MPa×%.

Недостатком данных обработок является с одной стороны длительный процесс ковки для набора необходимой степени деформации, с другой стороны при ковке 600°С сформированная структура имеет наклепанную структуру со среднем размером зерна 17 мкм и при этом произведение предела прочности на пластичность составляет 24 500 МПа х%. При многократной ковке 400°С с последующим отжигом при 600°С микроструктура в стали формируется за счет статической рекристаллизации, т.к. для формирования мелкозернистой структуры применяют статический отжиг, что усложняет способ получения.

Задачей изобретения является расширение арсенала способов изготовления объемных заготовок высокомарганцевых сталей аустенитного класса с рекристаллизованной мелкозернистой структурой.

Технический результат заключается в получении однородной динамически рекристаллизованной мелкозернистой структуры в объемных заготовках высокомарганцевых сталей аустенитного класса, благодаря чему происходит значительное повышение прочностных свойств стали при сохранении высоких показателей пластичности, а именно с уникальным сочетанием высокой прочности и пластичности, произведение которых σB × δ составляет не менее 49000 MPa×%.

Поставленная задача решается предложенным способом изготовления объемных заготовок высокомарганцевых сталей с TWIP эффектом, который включает гомогенизационный отжиг в течение 1 часа при температуре 1423 К и деформационно-термическую обработку при температуре 1423 К со степенью деформации 1. После чего заготовки подвергают термомеханической обработке, состоящей из ковки при постоянной температуре в диапазоне от 1223 до 1073К до истинной степени деформации 1 при скорости деформации в диапазоне от 10-2 до 10-4 с-1. После достижения заданной истиной степени деформации проводят мгновенную закалку в воду, которая фиксирует динамически рекристаллизованную структуру и не допускает процесса пост-динамической рекристаллизации.

Изобретение характеризуют изображения микроструктуры высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5%, полученной после ковки по предложенному способу.

Фиг.1 Микроструктура высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5% после проведения термомеханической обработки при 1073 К и различных скоростях деформации;

Фиг.2 Микроструктура высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5% после проведения термомеханической обработки при 1223 К и различных скоростях деформации.

Толстыми линиями на изображениях микроструктуры стали указаны высокоугловые границы свыше 15°, тонкими линиями малоугловые границы от 2°до 15°

Примеры осуществления.

Пример 1. В примере осуществления использовали сталь Fe-0.6%C-17%Mn-0.05%Nb-1.5%Al предварительно гомогенизированную в течение 1 часа при температуре 1423 К. Деформационно-термическую обработку провели путем горячей прокатки при температуре 1423 К до степени деформации 1. Далее заготовку, высотой 16 мм и диаметром 8 мм, подвергли термомеханической обработке, состоящей из ковки при постоянной температуре 1073К и при скорости деформации в диапазоне от 10-2 до 10-4 с-1 до степени деформации 1, с последующей мгновенной закалкой в воду. В результате чего формируется динамически рекристаллизованная мелкозернистая структура с размером зерна 3-7 мкм. Сталь обладает высокими показателями прочности и пластичности. Произведение прочности и пластичности находится в интервале 49 000 – 59 000 МПа×%.

Пример 2. В примере осуществления использовали сталь Fe-0.6%C-17%Mn-0.05%Nb-1.5%Al предварительно гомогенизированную в течение 1 часа при температуре 1423 К. Деформационно-термическую обработку провели путем горячей прокатки при температуре 1423 К до степени деформации 1. Заготовка, высотой 16 мм и диаметром 8 мм, была подвергнута термомеханической обработке, состоящей из ковки при постоянной температуре 1223К и при скорости деформации в диапазоне от 10-2 до 10-4 с-1 до степени деформации 1, с последующей мгновенной закалкой в воду. В результате чего формируется динамически рекристаллизованная мелкозернистая структура с размером зерна 7-17 мкм. Сталь обладает высокими показателями прочности и пластичности. Произведение прочности и пластичности находится в интервале 54 000 – 63 000 МПа×%.

Механические испытания на растяжение проводили по ГОСТ 1497-84 при комнатной температуре, результаты испытаний представлены в таблице 1.

Таблица 1 Механические свойства высокомарганцевой стали аустенитного класса Fe-0.6%C-17%Mn-0.05%Nb-1.5%Al после обработки предложенным способом в сравнении с прототипом.

Приведенные примеры подтверждают достижение заявленного технического результата по достижению однородной динамически рекристаллизованной мелкозернистой структуры в объемных заготовках высокомарганцевых сталей аустенитного класса с уникальным сочетанием высокой прочности и пластичности, произведение которых σB × δ составляет не менее 49 000 MPa×%. При этом сокращаются временные и энергозатраты за счет сокращения таких операций, как отжиг после деформационно-термической обработки, снижения степени деформации в процессе термомеханической обработки объемной заготовки методом ковки и времени гомогенизационного отжига с 5 до 1 часа.

Способ получения объемных заготовок из высокомарганцевой стали с рекристаллизованной мелкозернистой структурой, включающий гомогенизационный отжиг при температуре 1423 К и горячую деформационно-термическую обработку, отличающийся тем, что гомогенизационный отжиг проводят в течение 1 часа, горячую деформационно-термическую обработку осуществляют путем горячей прокатки заготовки до степени деформации 1 при температуре 1423 К и последующей термомеханической обработки путем ковки при постоянной температуре из интервала от 1073 до 1273 K с истинной степенью деформации не менее 1 при постоянной скорости деформации в интервале от 10до 10с с последующей мгновенной закалкой в воду.
СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНЫХ ЗАГОТОВОК ВЫСОКОМАРГАНЦЕВОЙ СТАЛИ С РЕКРИСТАЛЛИЗОВАННОЙ МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 142.
21.05.2023
№223.018.6afb

Способ прогнозирования риска развития преэклампсии у женщин с учетом генетических маркеров

Изобретение относится к медицине, а именно к медицинской диагностике, и может быть использовано для прогнозирования риска развития преэклампсии у женщин русской национальности. Из периферической венозной крови выделяют ДНК. Проводят анализ полиморфных вариантов rs1799945 гена HFE и rs805303...
Тип: Изобретение
Номер охранного документа: 0002795660
Дата охранного документа: 05.05.2023
23.05.2023
№223.018.6ea3

Способ получения кисломолочного продукта функционального назначения типа кефира

Изобретение относится к молочной промышленности. Способ получения кисломолочного продукта функционального назначения типа кефира включает использование нормализованного молока коровьего, которое подогревают до 40-41°С, заквашивают при помощи закваски, содержащей: Lactococcus lactis,...
Тип: Изобретение
Номер охранного документа: 0002795900
Дата охранного документа: 15.05.2023
23.05.2023
№223.018.6eaf

Способ прогнозирования риска развития рака молочной железы у женщин с использованием молекулярно-генетических данных

Изобретение относится к области медицины, в частности к клинической онкологии, медицинской генетике, молекулярной диагностике, и может быть использовано для прогнозирования риска развития рака молочной железы у женщин с использованием молекулярно-генетических данных. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002795897
Дата охранного документа: 15.05.2023
24.05.2023
№223.018.6f9e

Стоматологический сплав для съемных/несъемных зубных протезов

Изобретение относится к металлургии, а именно к сплавам на основе системы Co-Cr, которые предназначены для изготовления съемных/несъемных, бюгельных зубных протезов c высокими механическими свойствами и превосходным сочетанием прочности, пластичности и твердости, а также хорошей...
Тип: Изобретение
Номер охранного документа: 0002796027
Дата охранного документа: 16.05.2023
27.05.2023
№223.018.70a2

Способ производства смоквы, содержащей аралию маньчжурскую

Изобретение относится к пищевой промышленности, в частности к способу производства смоквы с функциональными свойствами. Предложенный способ предусматривает размягчение сильно пектиновых фруктов в пароконвектомате при температуре 75°С, которые затем очищают от твердых составляющих, измельчают до...
Тип: Изобретение
Номер охранного документа: 0002737550
Дата охранного документа: 01.12.2020
27.05.2023
№223.018.70a6

Способ производства смоквы с функциональными свойствами

Изобретение относится к пищевой промышленности, в частности к способу производства кондитерских изделий с функциональными свойствами. Способ получения смоквы с функциональными свойствами предусматривает получение пюре путем размягчения сильно пектиновых фруктов в пароконвектомате при...
Тип: Изобретение
Номер охранного документа: 0002737549
Дата охранного документа: 01.12.2020
27.05.2023
№223.018.70a9

Способ коррекции нарушения микроциркуляции в плаценте субстанцией 3-гидрокси-2-этил-6-метилпиридиния никотинат при adma-подобной модели преэклампсии

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для коррекции нарушений микроциркуляции в плаценте. Способ коррекции нарушения микроциркуляции в плаценте при ADMA-подобной модели преэклампсии включает воспроизведение модели преэклампсии...
Тип: Изобретение
Номер охранного документа: 0002735766
Дата охранного документа: 06.11.2020
27.05.2023
№223.018.70ae

Способ коррекции эндотелиальной дисфункции субстанцией 3-гидрокси-2-этил-6-метилпиридиния никотинат при adma-подобной модели преэклампсии

Изобретение относится к медицине, в частности к экспериментальной фармакологии и может быть использовано для коррекции эндотелиальной дисфункции у беременных. Способ коррекции эндотелиальной дисфункции при ADMA-подобной модели преэклампсии включает воспроизведение модели преэклампсии у крыс...
Тип: Изобретение
Номер охранного документа: 0002735903
Дата охранного документа: 10.11.2020
27.05.2023
№223.018.70af

Способ коррекции морфологических изменений в плаценте субстанцией 3-гидрокси-2-этил-6-метилпиридиния никотинат при adma-подобной модели преэклампсии

Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для коррекции морфологических нарушений в плаценте. Способ коррекции морфологических изменений в плаценте при ADMA-подобной модели преэклампсии включает воспроизведение модели преэклампсии...
Тип: Изобретение
Номер охранного документа: 0002735765
Дата охранного документа: 06.11.2020
27.05.2023
№223.018.70b4

Способ получения нанокапсул антоцианов краснокачанной капусты в альгинате натрия

Изобретение относится к области капсулирования активного вещества. Способ получения нанокапсул антоцианов краснокочанной капусты в альгинате натрия осуществляют, добавляя к спиртовому раствору, содержащему антоцианы краснокачанной капусты, суспензию альгината натрия в циклогексане в присутствии...
Тип: Изобретение
Номер охранного документа: 0002736641
Дата охранного документа: 19.11.2020
Показаны записи 41-41 из 41.
23.04.2023
№223.018.518d

Способ получения катаных полуфабрикатов из аустенитной коррозионностойкой стали

Изобретение относится к области металлургии, а именно к получению катаных листовых полуфабрикатов из аустенитной коррозионностойкой стали в виде стали типа 18-8 или стали типа 18-10, и может быть использовано для изготовления элементов строительных конструкций. Проводят горячую ковку стальных...
Тип: Изобретение
Номер охранного документа: 0002735777
Дата охранного документа: 09.11.2020
+ добавить свой РИД