×
27.06.2019
219.017.9897

ТЕРМОЭЛЕКТРОТРАНСФОРМАТОР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002692615
Дата охранного документа
25.06.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области энергетики, в частности теплоэлектрогенерации. Сущность изобретения заключается в том, что устройство предусматривает когенерацию тепловой и электрической мощности за счет низкотемпературных источников - вода, воздух, грунт, солнечное излучение, для чего в теплонасосе дополнительно предусмотрены регулятор подачи тепловой энергии, контроллер и электромотор-генератор, вход которого подключен к источнику электрической энергии, а выход подключен к потребителю электрической энергии, управляющий канал мотор-генератора подключен к контроллеру, второй управляющий канал которого подключен к регулятору подачи тепловой энергии, вход которого подключен к конденсатору, а выход подключен к потребителю тепловой энергии, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора. Техническим результатом является повышение эффективности производства тепловой и электрической мощности, производимой в зависимости от пропорций, задаваемых потребителем. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области энергетики, в частности к теплоэлектрогенерации.

Известны и широко применяются тепловые насосы, использующие низкотемпературные источники тепла для термотрансформации мощности низкотемпературных источников - вода, воздух, грунт, солнечное излучение, в мощность более высокой температуры, пригодной для отопления жилых и производственных помещений.

Недостатком указанных устройств является низкий коэффициент трансформации электрической мощности в тепловую мощность - СОР. Коэффициент СОР показывает во сколько раз количество тепловой мощности, передаваемой потребителю, превышает количество электрической мощности необходимой для переноса тепловой мощности от низкотемпературного источника высокотемпературному потребителю. Реальные значения эффективности современных тепловых насосов составляют порядка СОР=2.0 при температуре источника (испарителя) -20°С, и порядка СОР=4.0 при температуре источника +7°С.

Известны способы и устройства позволяющие трансформировать тепловую мощность низкотемпературных источников в электрическую. Наиболее близким является двигатель Стирлинга, который имеет следующие преимущества:

- как и все двигатели внешнего сгорания, двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т.д.,

- двигатель Стирлинга позволяет обеспечить недостижимый для других двигателей запас работоспособности в десятки и сотни тысяч часов непрерывной работы,

- для трансформации некоторых видов тепловой мощности, особенно при небольшой разнице температур, двигатели Стирлинга являются наиболее эффективными видами двигателей. Например, в случае преобразования в электричество мощность солнечной энергии двигатели Стирлинга дают больший КПД (до 31,25%), чем паровые тепловые машины,

- двигатель Стирлинга экологически чист, не расходует рабочее тело. Экологическая чистота двигателя, обусловлена экологической чистотой источника тепла.

Недостатками двигателей Стирлинга, в том числе роторных, (патент 2451811) являются сложность конструкции, большее количество деталей конструкции, чем у турбины, низкие обороты вала, переменный момент на валу, что вызывает вибрацию, все это обуславливает повышенные тепловые потери и соответственно низкий к.п.д. трансформации тепловой мощности в механическую.

Известно устройство - Тепловой электрогенератор Capstone WHG125 http://ngee.ru/catalog-kompanii?id=264&type=11&view=obiect, который состоит из испарителя, турбины с электрогенератором, конденсатора, и компрессора (насоса). В указанном устройстве применяется органический цикл Ренкина (ORC).

Устройство работает следующим образом: Рабочее тело R245fa в ресивере находится в жидком состоянии при температуре и давлении конденсации. Насос перекачивает R245fa в испаритель, повышая давление. Рабочее тело проходит через экономайзер, нагреваясь теплом пара из электросилового модуля. Далее рабочее тело попадает в испаритель, где происходит переход в паровую фазу за счет передачи тепла от внешнего источника. Затем оно в виде пара попадает в турбину в электросиловом блоке, на которой давление пара снижается до давления конденсации, приводя в движение ротор с электрогенератором. Выполнив работу в электросиловом блоке, рабочее тело все еще содержит большое количество тепла, часть которого передается жидкой фазе в экономайзере для повышения эффективности работы системы в целом. Рабочее тело в парообразном состоянии попадает в охладитель, где конденсируется в жидкость, после чего стекает в ресивер для повторного использования в цикле. Устройство обладает герметичным силовым блоком с турбиной на магнитных подшипниках, работающей на 26500 об/мин. Уровень эффективности преобразования тепловой энергии в электрическую энергию составляет 38%

Недостатками указанного устройства являются: отсутствие возможности работать в режиме теплового насоса, наличие потерь мощности необходимой для работы насоса (компрессора) посредством электропривода, соответственно низкий к.п.д.

Задача заявляемого изобретения - создание генератора тепловой и электрической мощности использующего низкотемпературные источники тепла, позволяющего обеспечить высокоэффективный процесс когенерации тепловой и электрической мощности.

Технический результат достигается тем, что заявленное устройство, состоящее из испарителя, конденсатора, компрессора, дросселя, регулятора подачи тепловой мощности, электромотор-генератора и контроллера предназначенное для генерации как тепловой, так и электрической мощности. При этом, с целью повышения коэффициента трансформации - СОР и генерации электрической мощности из тепловой мощности, устройство выполнено таким образом, что вход электромотор-генератора подключен к источнику электрической мощности, а выход подключен к потребителю электрической мощности, вход регулятора подачи тепловой мощности подключен к конденсатору, а выход подключен к потребителю тепловой мощности, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора.

Принцип работы устройства основан на том, что количество механической мощности компрессора, требуемой для работы теплового насоса составляет до 25%, (СОР=4.0) от количества тепловой мощности, передаваемой от низкотемпературного источника высокотемпературному потребителю. В тоже время уровень эффективности преобразования тепловой мощности в электрическую мощность посредством турбины в тепловом электрогенераторе Capstone WHG125 составляет = 38%. Таким образом, эффективность преобразования тепловой мощности в электрическую мощность посредством турбины составляет 38% что позволяет создать механическую мощность на валу компрессора превышающую необходимую мощность для работы теплового насоса с существующей эффективностью 25%, (СОР=4.0), что в свою очередь позволяет одну часть тепловой мощности рабочего тела с высокой температурой в конденсаторе использовать для создания на валу компрессора механической мощности необходимой для переноса рабочим телом тепловой мощности от низкотемпературной части устройства - испарителя к высокотемпературной части устройства - конденсатору, а другую часть тепловой мощности направить потребителю, либо использовать для создания электрической мощности электромотор-генератором. При этом часть тепловых потерь мощности в механизмах заявляемого устройства рекуперируется рабочим телом, что минимизирует совокупные потери мощности устройства.

Схема устройства представлена на фиг. 1.

Устройство работает следующим образом:

Потребитель посредством регулятора 5 устанавливает количество потребляемой тепловой мощности. Рабочее тело находится в испарителе 2 при температуре источника тепловой мощности (грунт, вода, воздух). Контроллер 6 включает электромотор-генератор 7 в режим электромотора, вал которого соединен с валом компрессора 4, компрессор перекачивает рабочее тело из испарителя 2 в конденсатор 1. Рабочее тело, за счет повышения давления нагревается и передает тепловую мощность от конденсатора через регулятор 5 потребителю. Далее рабочее тело с высокой температурой поступает на вход сопла турбины 3, вал которой соединен с валом компрессора 4 и валом электромотор-генератора. Сопло турбины одновременно выполняет функцию дросселя, понижающего давление рабочего тела, и функцию конструктивного элемента турбины, где рабочее тело отдает тепловую мощность, а турбина преобразовывает тепловую мощность в механическую мощность. При прохождении через турбину рабочее тело охлаждается ниже температуры испарителя, далее, рабочее тело поступает в испаритель, где нагревается до температуры испарителя, получая от источника тепла тепловую мощность, необходимую для работы устройства. При этом, потребление электрической мощности от внешнего источника электромотор-генератором снижается за счет механической мощности создаваемой турбиной на валу, а коэффициент трансформации электрической мощности в тепловую мощность - СОР возрастает. При снижении тепловой мощности, направляемой потребителю, избыточная часть тепловой мощности сосредоточенной в конденсаторе трансформируется посредством турбины в механическую мощность, достаточную для работы компрессора, и потребление электрической мощности от внешнего источника электромотор-генератором прекращается, контроллер 6 переключает электромотор-генератор в режим электрогенератора, в котором часть механической мощности, свыше необходимой для работы компрессора трансформируется в электрическую мощность и направляется потребителю. В таком режиме устройство генерирует электрическую мощность за счет источника тепловой мощности аналогично двигателю Стирлинга.

Преимуществами заявленного устройства являются:

1. Когенерация тепловой и электрической мощности из разнообразных низкотемпературных источников тепловой мощности (грунт, вода, воздух, солнечная энергия и др.) в широком диапазоне пропорций задаваемых потребителем.

2. Высокий коэффициент трансформации - СОР при работе устройства в режиме теплонасоса, который достигается за счет применения в качестве дросселя сопла турбины, вал которой соединен с валом компрессора и валом электромотор-генератора, а так же за счет рекуперации рабочим телом тепловых потерь.

3. Компактность низкая материалоемкость, низкий уровень вибраций достигаются за счет возможности расположения электромотор-генератора, компрессора и турбины на одной оси и на одном валу, что позволяет работать устройству на высоких оборотах, уровень вибраций снижается за счет отсутствия в заявленном устройстве возвратно-поступательных механизмов, таких как в известных теплонасосах и двигателях Стирлинга.

Термоэлектротрансформатор - генератор тепловой и электрической мощности, использующий низкотемпературные источники тепла, представляющий собой тепловой насос с испарителем, конденсатором, компрессором и дросселем, отличающийся тем, что дополнительно к тепловому насосу предусмотрены регулятор подачи тепловой мощности, контроллер, турбина и электромотор-генератор, вход которого подключен к источнику электрической мощности, а выход подключен к потребителю электрической мощности, управляющий канал электромотор-генератора подключен к контроллеру, второй управляющий канал которого подключен к регулятору подачи тепловой мощности, вход которого подключен к конденсатору, а выход подключен к потребителю тепловой мощности, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора.
ТЕРМОЭЛЕКТРОТРАНСФОРМАТОР
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
20.04.2014
№216.012.bc48

Слоевой газификатор непрерывного действия

Изобретение может быть использовано в химической, металлургической и энергетической областях. Слоевой газификатор непрерывного действия представляет собой аппарат шахтного типа на обратном дутье и состоит из топки с охлаждаемой колосниковой решеткой (1), питателя (2) непрерывной подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002513928
Дата охранного документа: 20.04.2014
27.10.2014
№216.013.019e

Способ газификации твердого топлива и устройство для его осуществления

Изобретение относится к области энергетики, металлургии и химической промышленности и может быть использовано для получения кокса и генераторного газа. Способ газификации твердого топлива включает загрузку топлива в реактор, газификацию топлива и удаление продуктов газификации. Причем...
Тип: Изобретение
Номер охранного документа: 0002531812
Дата охранного документа: 27.10.2014
10.05.2018
№218.016.4078

Газификатор твердого топлива с когенерацией тепловой и электрической энергий

Изобретение относится к энергетике, электрохимии и может быть использовано для получения тепловой и электрической энергий. Газификатор твердого топлива на обратном дутье с когенерацией тепловой и электрической энергий представляет собой аппарат с узлом загрузки топлива, узлом удаления...
Тип: Изобретение
Номер охранного документа: 0002648932
Дата охранного документа: 28.03.2018
14.05.2023
№223.018.5587

Способ генерации мощности для работы транспорта с электрическим приводом и устройство генерации мощности

Изобретение относится к электрическим тяговым системам транспортных средств. Способ генерации мощности для работы транспорта с электрическим приводом заключается в том, что используют тепловую мощность окружающей среды различных видов: воздуха, воды, грунта, солнечного излучения и комбинации...
Тип: Изобретение
Номер охранного документа: 0002738494
Дата охранного документа: 14.12.2020
Показаны записи 1-4 из 4.
20.04.2014
№216.012.bc48

Слоевой газификатор непрерывного действия

Изобретение может быть использовано в химической, металлургической и энергетической областях. Слоевой газификатор непрерывного действия представляет собой аппарат шахтного типа на обратном дутье и состоит из топки с охлаждаемой колосниковой решеткой (1), питателя (2) непрерывной подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002513928
Дата охранного документа: 20.04.2014
27.10.2014
№216.013.019e

Способ газификации твердого топлива и устройство для его осуществления

Изобретение относится к области энергетики, металлургии и химической промышленности и может быть использовано для получения кокса и генераторного газа. Способ газификации твердого топлива включает загрузку топлива в реактор, газификацию топлива и удаление продуктов газификации. Причем...
Тип: Изобретение
Номер охранного документа: 0002531812
Дата охранного документа: 27.10.2014
10.05.2018
№218.016.4078

Газификатор твердого топлива с когенерацией тепловой и электрической энергий

Изобретение относится к энергетике, электрохимии и может быть использовано для получения тепловой и электрической энергий. Газификатор твердого топлива на обратном дутье с когенерацией тепловой и электрической энергий представляет собой аппарат с узлом загрузки топлива, узлом удаления...
Тип: Изобретение
Номер охранного документа: 0002648932
Дата охранного документа: 28.03.2018
14.05.2023
№223.018.5587

Способ генерации мощности для работы транспорта с электрическим приводом и устройство генерации мощности

Изобретение относится к электрическим тяговым системам транспортных средств. Способ генерации мощности для работы транспорта с электрическим приводом заключается в том, что используют тепловую мощность окружающей среды различных видов: воздуха, воды, грунта, солнечного излучения и комбинации...
Тип: Изобретение
Номер охранного документа: 0002738494
Дата охранного документа: 14.12.2020
+ добавить свой РИД