×
22.06.2019
219.017.8e50

Результат интеллектуальной деятельности: Проволока для сварки среднеуглеродистых среднелегированных броневых сталей

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для получения сварных соединений из среднеуглеродистых среднелегированных броневых сталей. Сварочная проволока содержит компоненты в следующем соотношении, мас. %: хром 18,5-22,0, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2, железо – остальное. Сварочная проволока обеспечивает высокую пулестойкость сварных соединений. 3 ил., 1 пр.

Техническое решение относится к области материалов для сварки, а именно к проволокам для получения сварных соединений из броневых сталей, и может быть использовано для обеспечения пулестойкости таких изделий как, например, сейфы.

Броневые стали для конструкций широкого назначения должны обладать хорошей пластичностью, высокой сопротивляемостью хрупкому разрушению и удовлетворительной свариваемостью. Для широкого круга применений необходима также твердость выше 40 HRC для обеспечения пулестойкости, которую можно формализовать как стойкость против концентрированных механических воздействий, например, ударам индентора с высокой кинетической энергией [1]. Эти свойства обеспечивают среднелегированные высокопрочные стали за счет структуры сварных соединений, которая формируется в процессе мартенситнога или бейнитного превращений и определяется соответствующими легированием и термообработкой. В свою очередь, формирование необходимой структуры сварных соединений в значительной мере определяется химическим составом сварочной проволоки.

Известна проволока марки Св-08ГСМТ по ГОСТ 2246-70, химический состав которой включает, мас. %: углерод 0,06-0,11, марганец 1,0-1,3, кремний 0,4-0,7, железо - основа. Указанная проволока относится к ферритному классу. Ее использование для получения сварных соединений из среднелегированных высокопрочных сталей обеспечивает хорошую стойкость шва против образования холодных трещин, что обусловлено распадом переохлажденного аустенита преимущественно в нижней части температурного интервала ферритно-перлитного превращения. В этой области образуется ферритная матрица с вкраплениями продуктов перлитно-бейнитного превращения [2]. Однако, на участке перегрева зоны термического влияния, являющегося наиболее подверженным образованию холодных трещин, микроструктура металла представляет собой мартенситно-бейнитную смесь высокой твердости, что резко повышает склонность сварного соединения в целом к образованию холодных трещин. При этом металл шва отличается низкой пулестойкостью. Это обусловлено недостаточной твердостью (200 HV) при сварке изделий в термически обработанном состоянии без последующей термической обработки [3].

Известен состав проволоки для сварки высокопрочных сталей следующего химического состава, мас. %: С - 0,3-0,35; Si - 0,3-0,6; Mn - 1,5-2,0; Cr -2,0-2,5; Ni - 1,0-2,0; W - 1,0-1,5; Mo - 0,4-0,5; V - 0,05-0,10; Со - 0,5-1,0; Y - 0,04-0,06; Al - 0,01-0,03; Fe - остальное (Патент РФ 2217283 В23К35 Состав сварочной проволоки / Старова Л.Л.; Борисов М.Т.; Лукин В.И. и др. - Опубл. 27.11.2003). Введение ванадия, кобальта, иттрия и алюминия в предлагаемый состав сварочной проволоки при заявленном соотношении компонентов позволило повысить прочность сварного соединения при сохранении вязкости и стойкости против образования горячих трещин. Недостатком известной стали является низкая сопротивляемость образованию холодных трещин, что не позволяет использовать ее для сварки среднелегированных высокопрочных сталей.

В качестве прототипа выбрана проволока марки Св-08Х20Н9Г7Т ГОСТ 2246-70, химический состав которой, мас. %: углерод менее 0,1, кремний 0,5-1,0, марганец 5,0-8,0, никель 8,0-10,0, хром 18,5-22,00, титан 0,6-0,9, железо - основа.

В швах сварных соединений, выполненных этой проволокой, формируется высокостабильная аустенитная структура, не склонная к образованию холодных трещин. В зоне термического влияния при этом формируется преимущественно верхний бейнит при наличии мартенсита отпуска [4]. Такая структура обусловливает высокую стойкость сварных соединений против образования холодных трещин. Однако, прочность аустенитного металла шва ниже, в сравнении с основным металлом, что неприемлемо при наличии требований к сварному соединению по пулестойкости.

Задачей предлагаемого технического решения является обеспечение свариваемости и пулестойкости сварных соединений из среднелегированных высокопрочных сталей.

Поставленная задача решается путем использования для получения сварных соединений сварочной проволоки на основе железа, содержащей железо, хром, углерод, титан, отличающейся тем, что для обеспечения пулестойкости сварных соединений проволока содержит дополнительно азот и алюминий при следующем соотношении элементов, мас. %: хром 18,5-22, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2.

В отличие от прототипа увеличено количество углерода, из числа легирующих исключены никель и марганец, добавлены азот и алюминий.

Углерод и азот являются сильными аустенизаторами, их содержание в указанных пределах обеспечивает формирование структуры с метастабильным аустенитом при исключении других аустенизаторов - никеля и марганца. Никель и марганец способствуют усилению стабильности аустенита, что не позволяет реализовать структуру метастабильного аустенита, обеспечивающую синергетический эффект мартенситного деформационного упрочнения в наплавленном металле. Увеличение содержания азота выше заявленного предела приводит к повышенной пористости шва [5]. Алюминий и титан в указанных пределах интенсифицируют процесс γ→α превращения, способствуя увеличению числа центров кристаллизации и получению мелкозернистой структуры [3].

При концентрациях алюминия и титана ниже указанных пределов модифицирующий эффект не проявляется, а при концентрациях выше указанных пределов ухудшаются сварочно-технологические свойства проволоки. Это проявляется в образовании очень прочной и тугоплавкой шлаковой пленки на поверхности металла шва, что затрудняет процесс сварки и может вызвать появление дефектов (несплавления и шлаковые включения).

За счет предложенной системы легирования сварной шов содержит 50-85% аустенита, 15-50% мартенсита и феррита в различных сочетаниях. Высокая доля аустенита обеспечивает хорошую свариваемость стали за счет формирования в зоне термического влияния благоприятной бейнитно-мартенситной структуры, аналогичной структуре, образующейся при использовании проволоки-прототипа. Получаемый аустенит отличается нестабильностью и при воздействии импульсных концентрированных механических нагрузок происходит его превращение в мартенсит, что сопровождается повышением твердости и пулестойкости.

Пример конкретного выполнения.

Дуговой сваркой в защитном газе выполнены жесткие технологические пробы [3] с целью оценки сопротивления образованию горячих и холодных трещин в сварном соединении

Материал - сталь марки 30ХГСА толщиной 13 мм, сварные соединения типа С17 по ГОСТ 14771. Ток 210 А, напряжение 24 В, защитный газ - смесь (Ar+18% СО2). Для сравнения использованы проволоки: Св-08ГСМТ, ГОСТ 2246-70 (аналог), Св-08Х20Н9Г7Т, ГОСТ 2246-70 (прототип), Св-35Х20АТЮ (соответствует предложенному техническому решению). После охлаждения на воздухе до температуры 20°С шов из проволоки 35Х20ГСТЮА подвергли нагружению: производили динамическое нагружение шариком диаметром 8 мм из твердого сплава ВК8, установленным по центру шва, падением гири массой 1 кг с высоты 1,2 м. При ударном нагружени и образца на поверхности шва из проволоки Св-35Х20АТЮ (соответствует предложенному техническому решению) образуется лунка диаметром D=2,42 мм, что соответствует площади:

S = π⋅D/4 = 2,42/4 = 4,52 мм2.

Ударное давление составит:

σ = P/S = 9,8 Н/(4,52⋅10-6 м2) = 2170 Мпа..

Такой уровень ударного давления достоверно моделирует баллистическое воздействие удара пули [6]. Из сварных соединений механически с принудительным охлаждением вырезали темплеты для макро- и микрошлифов.

Структуру металла сварных соединений определяли путем металлографического и рентгенографического анализа.

Проводили измерение микротвердости металла зоны сплавления и металла шва (согласно ГОСТ 9450-76 при нагрузке 50 г);

Были проведены баллистические испытания, которые заключались в отстреле исследуемого фрагмента пулями калибра 7,62 мм. В зоне баллистического поражения образца 5 было проведено металлографическое исследование микроструктуры и измерение микротвердости металла.

Обозначения образцов приведены в таблице 1 (фиг. 1).

Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом показано в таблице 2 (фиг. 2). Повышение микротвердости при пластической деформации в образце 4 является предпосылкой для обеспечения пулестойкости. Это было подтверждено при реальных пулевых испытаниях.

Наплавленный металл из проволок, выбранных в качестве прототипа и аналога, образцы 6, 7, показали отрицательный результат по итогам баллистических испытаний. Отмечено проникающее поражение шва на металле толщиной 13 мм. Металл, наплавленный проволокой по предложенному техническому решению, испытания выдержал, см. фиг. З. На шлифе показан след от пули в металле, наплавленном проволокой по предложенному техническому решению (основной металл - броня толщиной 13 мм).

Металлографическое исследование у образца 5 микроструктуры зоны баллистического поражения (зоны, прилегающей к следу от пули) показало, что в участке, прилегающем к пулевому отверстию, произошли значительные структурные изменения. Деформация от пули вызвала сжатие в направлении, перпендикулярном направлению движения пули. В результате такой деформации зерна аустенита сильно вытянулись в направлении движения пули, в некоторых из них произошло мартенситное превращение с образованием пластинчатых или игольчатых кристаллов мартенсита. Количество мартенсита увеличилось от 10-15% до 40-50%. Подобные изменения структуры наблюдаются на расстояниях более 0 мм и до 1,0-1,5 мм от пулевого отверстия. Микротвердость непосредственно вблизи пулевого отверстия высока и составляет ~530 HV. На расстоянии 1,0-1,2 мм она интенсивно снижается до 440-450 HV. На более значительном расстоянии наблюдается более плавное снижение микротвердости. На значительном расстоянии от пулевого отверстия микротвердость составляет 360-370 HV, что приближается к значениям микротвердости наплавленного металла, не подвергавшегося ударным нагрузкам.

Техническое решение позволяет обеспечить пулестойкость сварных соединений, выполненных разработанной проволокой, и предотвращение трещин при сварке среднелегированных высокопрочных сталей.

Литература

1. Гладышев С.А., Григорян В.А. Броневые стали. - М.: Интермет Инжиниринг, 2010. - 336 с.

2. Технология электрической сварки металлов и сплавов плавлением / Под ред. Б.Е. Патона. - М: Машиностроение, 1974, 768 с.

3. Сварка и свариваемые материалы: Справочник в 3 т. Под ред. В.Н. Волченко. Т.1 Свариваемость материалов. Под ред. Э.Л. Макарова. -М.: Металлургия, 1991, 528 с.

4. Демченко Э.Л., Васильев Д.В. Влияние структурно-фазового состояния высокопрочного металла на свойства сварных соединений закаливающихся сталей. // Автоматическая сварка, 2007, №7, с. 38-43.

5. Литвиненко-Арьков Б.В., Соколов Г.Н., Кязымов Ф.А., Лысак В.И., Гуц С.С. Легирование наплавленного металла азотом через наполнитель порошковых проволок. // Изв. ВолгГТУ, 2013, вып. 6 (109) / том 7, с. 152-155.

6. Алексенцева СЕ. Ударно-волновые процессы взаимодействия высокоскоростных элементов с конденсированными средами / Дис. … д.т.н. - Самара, 2015, 173 с.

Проволока для сварки среднеуглеродистых среднелегированных броневых сталей, содержащая железо, хром, углерод, титан, отличающаяся тем, что она содержит дополнительно азот и алюминий при следующем соотношении элементов, мас. %: хром 18,5-22,0, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2, железо остальное.
Проволока для сварки среднеуглеродистых среднелегированных броневых сталей
Проволока для сварки среднеуглеродистых среднелегированных броневых сталей
Проволока для сварки среднеуглеродистых среднелегированных броневых сталей
Источник поступления информации: Роспатент

Показаны записи 131-140 из 207.
18.12.2019
№219.017.ee33

Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов

Группа изобретений предназначена для определения фильтрующих свойств пористых керамических фильтров в форме цилиндров с боковой фильтрующей поверхностью по расплавленной смеси галогенидов щелочных металлов, например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных...
Тип: Изобретение
Номер охранного документа: 0002709092
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee51

Комплекс для переработки бокситового сырья

Техническое решение относится к области цветной металлургии, в частности к технологии производства глинозема из бокситов. Комплекс для переработки бокситового сырья содержит две линии, в первой из которых последовательно расположены дробилка для дробления высококачественного боксита, мельница...
Тип: Изобретение
Номер охранного документа: 0002709084
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee7a

Способ синтеза оксида титана

Изобретение может быть использовано при получении пигментного оксида титана для пищевой и косметической промышленности. Способ синтеза оксида титана с фазовой модификацией анатаз включает приготовление водного раствора хлорида титанила и гидролиз указанного раствора при добавлении аммиака с...
Тип: Изобретение
Номер охранного документа: 0002709093
Дата охранного документа: 13.12.2019
19.12.2019
№219.017.eef0

Устройство определения задымления в лабораторной электропечи

Изобретение относится к технической физике, в частности к определению параметров металлических расплавов. Устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержит патрубок электропечи, вакуумные...
Тип: Изобретение
Номер охранного документа: 0002709436
Дата охранного документа: 17.12.2019
19.12.2019
№219.017.ef23

Способ переработки гидролизной серной кислоты

Изобретение относится к неорганической химии и может быть использовано в бумажной, лакокрасочной, пищевой и строительной промышленности. Для переработки гидролизной серной кислоты осуществляют экстракцию из нее скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ. Промывают насыщенный...
Тип: Изобретение
Номер охранного документа: 0002709369
Дата охранного документа: 17.12.2019
19.12.2019
№219.017.ef4d

Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов

Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации...
Тип: Изобретение
Номер охранного документа: 0002709371
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f039

Способ упрочнения пластической деформацией проволоки

Изобретение относится к области металлургии и может быть использовано при упрочнении проволоки путем интенсивной проработки структуры металла пластической деформацией. Проволоку подвергают изгибу циклами до достижения необходимого уровня упрочнения. Каждый цикл включает стадию наматывания...
Тип: Изобретение
Номер охранного документа: 0002709554
Дата охранного документа: 18.12.2019
24.12.2019
№219.017.f1b5

Способ получения композиций на основе оксидов циркония и церия

Изобретение может быть использовано при получении трехмаршрутных катализаторов для очистки выхлопных газов. Способ получения композиций на основе оксидов циркония и церия, применяемых в составе трехмаршрутных катализаторов, включает приготовление раствора, содержащего нитраты циркония, церия,...
Тип: Изобретение
Номер охранного документа: 0002709862
Дата охранного документа: 23.12.2019
27.12.2019
№219.017.f2ba

Приливная гэс

Изобретение относится к конструкциям автономных приливных бесплотинных электростанций небольшой мощности и может быть использовано для преобразования энергии морских течений (приливов-отливов) в электрическую энергию. Назначение: обеспечение энергией удаленных потребителей, лишенных...
Тип: Изобретение
Номер охранного документа: 0002710135
Дата охранного документа: 24.12.2019
27.12.2019
№219.017.f2eb

Установка для производства воды из сухого атмосферного воздуха

Изобретение относится к области водоснабжения. Установка содержит аккумулятор холода, водосборник и воздуховод в виде вытяжной трубы с нагревателем воздуха, соединенным с солнечным коллектором. В качестве аккумулятора холода использован грунт, в который помещен дополнительно введенный...
Тип: Изобретение
Номер охранного документа: 0002710187
Дата охранного документа: 24.12.2019
Показаны записи 11-12 из 12.
21.05.2020
№220.018.1f0a

Автоматизированный комплекс контроля качества сварных соединений

Использование: для контроля качества сварных соединений. Сущность изобретения заключается в том, что автоматизированный комплекс контроля качества сварных соединений содержит прижимы для его крепления на контролируемом изделии, искательную головку, механизм перемещения искательной головки,...
Тип: Изобретение
Номер охранного документа: 0002721480
Дата охранного документа: 19.05.2020
21.05.2020
№220.018.1f28

Автоматизированный контроль температур при сварке

Изобретение относится к сварочному производству и может быть использовано в устройствах контроля основных параметров сварки в качестве средства автоматизированного контроля температур. Техническим результатом является расширение информативных возможностей системы автоматизированного контроля...
Тип: Изобретение
Номер охранного документа: 0002721478
Дата охранного документа: 19.05.2020
+ добавить свой РИД