×
20.06.2019
219.017.8d71

СПОСОБ ПРОВЕДЕНИЯ РЕСУРСНЫХ ИСПЫТАНИЙ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002691919
Дата охранного документа
18.06.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к волоконно-оптическим линиям связи и предназначена для их ресурсных и климатических испытаний. Заявленный способ проведения ресурсных испытаний волоконно-оптической линии связи включает закладку образца оптического кабеля внутри стальной трубы, при этом концы оптического кабеля выходят из стальной трубы, затем стальную трубу помещают в климатическую камеру, заливают в нее воду и через шлюз выводят концы образца оптического кабеля. К оптическим волокнам с обеих сторон подключают средства измерений и контролируют деградацию кабеля, изменяют температуру воды до ее замораживания и определяют влияние замораживания на характеристики оптического кабеля. Перед помещением стальной трубы в климатическую камеру в нее засыпают грунт, по физическим свойствам соответствующий грунту в месте прокладки волоконно-оптического кабеля, производят многократное замораживание и размораживание воды в стальной трубе, при этом число операций выбирают по среднестатистическому количеству заморозков в районе предполагаемой эксплуатации оптиковолоконной линии связи в течение заявленного его ресурса. Заявленное устройство для проведения ресурсных испытаний волоконно-оптической линии связи содержит климатическую камеру, внутри которой установлена стальная труба, заполненная водой, внутри которой проложен образец оптического кабеля, концы которого выведены к средствам измерений. При этом к полости климатической камеры через управляемый клапан присоединен трубопровод впрыска криогенного продукта, также в полости установлены электрические нагреватели, соединенные через автоматический выключатель с источником электроэнергии. Технический результат - ускоренное определение ресурса волоконно-оптической линии связи. 2 н. и 4 з.п. ф-лы, 3 ил., 1 табл.
Реферат Свернуть Развернуть

Группа изобретений относится к волоконно-оптическим линиям связи и предназначена для обеспечения передачи потоков информации.

Известен способ [1] испытаний стойкости ОК действию замерзающей воды в ЗПТ, заключающийся в том, что образец ОК прокладывают внутри отрезка ЗПТ так, чтобы концы ОК выходили из ЗПТ, ЗПТ по концам герметизируют и заполняют дистиллированной водой, к оптическим волокнам (ОВ) подключают средство измерений и контролируют их затухание, затем образец ОК в заполненной дистиллированной водой ЗПТ помещают в климатическую камеру, температуру в которой опускают ниже минус пяти градусов по Цельсию, выдерживают при этой температуре до полного замерзания воды в ЗПТ, контролируют затухание ОВ и полагают, что образец ОК выдержал испытания, если изменения затухания ОВ не превышает заданного порогового значения. Однако, при отсутствии внешней нагрузки на ЗПТ для данного способа невозможно адекватно моделировать условия, при которых на ОК действует замерзающая вода в ЗПТ, проложенном в грунте.

Известен способ [2] испытаний стойкости ОК действию замерзающей воды, заключающейся в том, что образец ОК прокладывают внутри отрезка стальной трубы так, чтобы концы ОК выходили из стальной трубы, стальную трубу по концам герметизируют и заполняют дистиллированной водой, затем образец ОК в заполненной дистиллированной водой стальной трубе помещают в климатическую камеру, через шлюз которой выводят концы образца ОК, к оптическим волокнам (ОВ) подключают средство измерений и контролируют их затухание, температуру в климатической камере изменяют в соответствии с графиком, согласно которому выдерживают образец ОК в заполненной дистиллированной водой стальной трубе при низкой отрицательной температуре до полного замерзания воды в стальной трубе, контролируют затухание ОВ в процессе испытаний и полагают, что образец ОК выдержал испытания, если изменения затухания ОВ не превышает заданного порогового значения. Данный способ не предусматривает испытаний ОК действию замерзающей воды в ЗПТ. При этом данный способ не позволяет регулировать нагрузку, создаваемую при замерзании воды в стальной трубе. Как показали исследования [3, 4], нагрузки при замерзании воды в стальной или асбоцементной трубе диаметром 100 мм достигают 60-84 МПа и более. Вместе с тем, известно, что даже в самых тяжелых условиях вечной мерзлоты нагрузка при промерзании грунта на глубине до 2 м не превышает 5,6 МПа [5]. Таким образом, нагрузки создаваемые в стальной трубе при замерзании воды значительно превышают удельные нагрузки при замерзании воды в грунтах, что при отсутствии возможности регулирования давления замерзающей воды в стальной трубе не позволяет адекватно моделировать нагрузки в промерзающем грунте.

Известен способ испытания волоконно-оптического кабеля по патенту ЕР №2056146, МПК G02B 46/4402, фиг. 2 и описание, опубл. 06.05.2009 г.

Испытания проводят в соответствии со стандартом США EIA FOTP 41 A (Electronic Idustries Alliance-Fiber Optic Testing Procedure. Суть испытания на сжатие: образец оптичкеского кабеля сжимают между двумя плоскими пластинами.

Недостаток: такое испытание не создает реальные объемные нагрузки, возникающие при обмерзании кабеля.

В соответствии с российскими ГОСТами [6] климатические испытания являются обязательными, но программа испытаний и схема установки для испытания каждого изделия в них не приводится.

Известен способ испытания волоконно-оптической линии связи и устройство для его осуществления по патенту РФ на изобретение №2495461, МПК G02B 6/44, опубл. 27.05.20013 г., прототип.

Этот способ испытаний включает закладку образца оптического кабеля внутри отрезка стальной трубы, при этом концы оптического кабеля выходят из стальной трубы, заполнение стальной трубы водой и помещение ее в климатическую камеру, через шлюз которой выводят концы образца оптического кабеля, к оптическим волокнам с обеих сторон подключают средства измерений и контролируют деградацию кабеля, изменяют температуру воды до ее замораживания и определяют влияние замораживания на характеристики оптического кабеля.

Недостатки способа: длительность проведения испытаний для определения ресурса и невозможность корректировать результаты для оптических кабелей, эксплуатирующихся в различных климатических зонах.

Задача создания группы изобретений: ускоренное определение ресурса волоконно-оптической линии связи.

Достигнутый технический результат: ускоренное определение ресурса волоконно-оптической линии связи.

Решение указанной задачи достигнуто в способе проведения ресурсных испытаний волоконно-оптической линии связи, включающем закладку образца оптического кабеля внутри стальной трубы, при этом концы оптического кабеля выходят из стальной трубы, стальную трубу помещают в климатическую камеру заливают в нее воду и, через шлюз выводят концы образца оптического кабеля, к оптическим волокнам с обеих сторон подключают средства измерений и контролируют деградацию кабеля, изменяют температуру воды до ее замораживания и определяют влияние замораживания на характеристики оптического кабеля, тем, что перед помещением стальной трубы в климатическую камеру в нее засыпают грунт по физическим свойствам соответствующий грунту в месте прокладки волоконно-оптического кабеля, производят многократное замораживание и размораживание воды в стальной трубе, при этом число операций выбирают по среднестатистическому количеству заморозков в районе предполагаемой эксплуатации оптиковолоконной линии связи в течение заявленного его ресурса.

Результаты измерений, полученных в итоге ресурсных испытаний сравнивают с реально замеренными показателями деградации оптического кабеля и по их результатам вычисляют поправочный коэффициент, по которому при необходимости корректируют гарантированный ресурс волоконно-оптической линии связи.

Изменение температуры внутри стальной трубы выдерживают в диапазоне колебания температуры окружающей среды в районе предполагаемой эксплуатации оптиковолоконной линии связи.

Решение указанной задачи достигнуто в устройстве для проведения ресурсных испытаний волоконно-оптической линии связи, содержащем климатическую камеру внутри которой установлена стальная труба, заполненная водой, внутри которой проложен образец оптического кабеля, концы которого выведены к средствам измерений, тем, что к полости климатической камеры через управляемый клапан присоединен трубопровод впрыска криогенного продукта, также в полости установлены электрические нагреватели, соединенные через автоматический выключатель с источником электроэнергии.

Устройство для проведения ресурсных испытаний волоконно-оптической линии связи может содержать блок управления.

Устройство для проведения ресурсных испытаний волоконно-оптической линии связи может содержать датчик температуры внутри стальной трубы, соединенный электрической связью с блоком управления.

Сущность группы изобретений поясняется на чертежах Фиг. 1…3, где:

- на фиг. 1 приведена схема установки для ресурсных и климатических испытаний.

- на фиг. 2 приведена схема управления установкой.

- на фиг. 3 приведена диаграмма испытаний.

На фиг. 1 представлена принципиальная структурная схема устройства для реализации заявляемого способа.

Устройство содержит образец отрезка оптического кабеля 1, содержащий оптические волокна 2, проложенный в стальной трубе 3 с кольцевым зазором 4. Образец 1 и отрезок стальной трубы 3 герметизированы.

Кольцевой зазор стальной трубы 4 заполнен водой 5 и грунтом по физическим свойствам соответствующий грунту в месте прокладки волоконно-оптического кабеля, при этом стальная труба 3 помещена в климатическую камеру 6, концы образца 1 выходят отрезка стальной трубы 3 через герметичные фланцы 7 и 8 и подключены к средствам измерений 9 и 10.

Климатическая камера 6 имеет тепловую изоляцию 11 и полость 12, в которой установлен коллектор 13 с форсунками 14 и нагреватель 15.

Коллектор 13 трубопроводом 16, содержащим клапан 17 соединен с емкостью криогенного продукта 18.

Кольцевой зазор 4 водопроводом 19, содержащим клапан 20 соединен с с емкостью воды 21. С другой стороны кольцевой зазор 4 отводящим трубопроводом 22 соединен с расширительной емкостью 23, к которой присоединен трубопровод сброса 24 с дренажным клапаном 25.

Нагреватель 15 электрическими проводами 26 через выключатель 27 соединен с источником электроэнергии 28.

Устройство (фиг. 2) может содержать блок управления 27, который каналами управления 30 соединен с клапанами 17, 20, 25 и выключателем 27.

В кольцевом зазоре 4 установлен датчик температуры 31. Средства измерения 9, 10 и датчик температуры 31 соединены линиями контроля 32 с контроллером 33, который соединен с блоком управления 29.

На фиг. 3 приведена диаграмма испытаний образца ВОЛС 1.

Показано изменение Тв температуры воды (льда) в кольцевом зазоре 4 в зависимости от времени проведения испытаний t.

Способ осуществляется следующим образом.

Образец оптического кабеля 1 помещают в стальную трубу 3 с образованием между ними кольцевого зазора 4. В стальную трубу в кольцевой зазор 4 засыпаю грунт, по физическим свойствам соответствующий грунту в месте прокладки волоконно-оптического кабеля. Стальную трубу 3 устанавливают в климатическую камеру 6. Открывают клапан 20 и по трубопроводу 19 заполняют кольцевой зазор 4 с грунтом водой 5 из емкости воды 21 до появления воды на выходе сливного трубопровода 24. Потом открывают клапан 17 и по коллектору 13 через форсунки 14 заполняют полость 12 криогенным продуктом, например, жидким азотом. Криогенный продукт замораживает воду 5 в кольцевом зазоре 4, что контролируют по показанию датчика температуры 31 (фиг. 2). Захолаживают лед до минимальной температуры Тмин (фиг. 3). Потом закрывают клапан 17 и включают выключатель 27, который подает электрическое напряжения на нагреватель 15. Нагреватель 15 подогревает полость 12 и стальную трубу 3 с льдом. Лед тает и превращается в воду 5. Температура воды 5 повышается до Т макс. Эти циклы охлаждения-подогрева повторяют N раз.

Т макс=+50°С

Т мин=-50°С.

Чисто циклов N определяется по статистике заморозков в регионе, где предполагается использование оптиковолоконной линии связи.

Например, в Москве в течение года отмечается в среднем 6 заморозков и 6 случаев изморози: см. табл. 1.

Табл. 1

Метеорологическая статистика за последние 10 лет в г. Москва

Гололед и изморозь в год случается 12 раз.

С учетом этого при ресурсе оптического кабеля 10 час достаточное число циклов замораживание

N=10Ц=120

Ориентировочное время проведения одного полного цикла испытаний

К=0,5×120=60 час.

В итоге способ имитирует деградацию кабеля в замерзающем грунте, при этом за 60 час он подвергается воздействию эквивалентному его работе в реальных условиях в течение 10 лет. Контролируя с помощью средства измерений 9 и изменения деградации оптических волокон 2 в образце оптического кабеля 1, оценивают способность образца ОК 1 выдерживать действие замерзающей воды в течение заданного ресурса оптического кабеля.

Применение группы изобретений позволило:

1. Обеспечить климатические ресурсные испытания волоконно-оптической линии связи,

2. Уменьшить в сотни раз время ресурсных испытаний.

3. Проводить климатические испытания оптических кабелей для различных климатических условий.

4. Испытывать влияние различных мероприятий на деградацию оптического кабеля.

5. Корректировать трактовку результатов испытания по реальным результатам эксплуатации оптических кабелей.

ЛИТЕРАТУРА

1. Калягин A.M. Исследование линии оптического кабеля, проложенного в защитной пластмассовой трубе в многолетнемерзлых грунтах // Электросвязь, 2006, №12. - с. 11-15.

2. EIA/TIA-455-98A-1990. FOTP-98. Fiber optic cable external freezing test.

3. Ляхович И.Ф., Рак С.М., Поляков С.Т. Защита кабелей от повреждений замерзающей водой // Вестник связи, 1985, N9, с. 30-31

4. Зотов Г.А. Эксплуатация скважин в неустойчивых коллекторах // М.: Недра, 1987. - 173 с.

5. Киселев М.Ф. Предупреждение деформации грунтов от морозного пучения // Л.: Стройиздат, 1985. - 130 с.

6. ГОСТ 16962-71. Изделия электронной техники и электротехники. Механические и климатические воздействия. Требования и методы испытаний (с Изменениями N 2, 3). Изд. Госстандарт.


СПОСОБ ПРОВЕДЕНИЯ РЕСУРСНЫХ ИСПЫТАНИЙ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ПРОВЕДЕНИЯ РЕСУРСНЫХ ИСПЫТАНИЙ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ПРОВЕДЕНИЯ РЕСУРСНЫХ ИСПЫТАНИЙ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ПРОВЕДЕНИЯ РЕСУРСНЫХ ИСПЫТАНИЙ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 244.
10.01.2013
№216.012.1828

Летательный аппарат "летающая тарелка"

Изобретение относится к летательным аппаратам вертикального взлета и посадки. Летательный аппарат содержит корпус осесимметричной формы, топливный бак, приборный отсек, газотурбинный двигатель, включающий компрессор, камеру сгорания, турбину, регулируемый сопловой аппарат, включающий сопловые...
Тип: Изобретение
Номер охранного документа: 0002471676
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d79

Мобильный боевой лазерный комплекс и способ повышения боевой эффективности комплекса

Группа изобретений относится к боевой технике. Боевой комплекс наземного лазера содержит боевую машину с боевым лазером в верхней части. Боевая машина выполнена на основе танка, содержащего гусеничную ходовую часть, нижнюю платформу, емкости окислителя и горючего. Боевой лазер установлен выше...
Тип: Изобретение
Номер охранного документа: 0002473039
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.2401

Кислородно-водородный жидкостный ракетный двигатель

Изобретение относится к жидкостным ракетным двигателям, работающим на жидком водороде. Кислородно-водородный жидкостный ракетный двигатель, содержащий камеру сгорания, имеющую систему регенеративного охлаждения сопла горючим, два турбонасосных агрегата, в том числе турбонасосный агрегат...
Тип: Изобретение
Номер охранного документа: 0002474719
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26a9

Летательный аппарат "летающая тарелка"

Изобретение относится к летательным аппаратам вертикального взлета. Летательный аппарат содержит корпус осесимметричной формы, топливный бак, приборный отсек, газотурбинный двигатель. Газотурбинный двигатель содержит компрессор, камеру сгорания, турбину и реактивное сопло. Двигатель установлен...
Тип: Изобретение
Номер охранного документа: 0002475417
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2892

Боевой орбитальный лазер с ядерной накачкой

Устройство относится к боевой технике и может применяться в космических боевых установках с использованием лазера. Боевой орбитальный лазер с ядерной накачкой содержит установленные на орбитальной станции источник энергии и, по меньшей мере, один резонатор. Орбитальная станция выполнена с...
Тип: Изобретение
Номер охранного документа: 0002475906
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2893

Боевой орбитальный лазер с ядерной накачкой

Устройство относится к боевой технике и может быть использовано в космических войсках. Боевой орбитальный лазер с ядерной накачкой содержит резонатор, газодинамический тракт с нанесенным на внутреннюю поверхность внутренней стенки слоем, включающим ядра урана 235, наполненный рабочей газовой...
Тип: Изобретение
Номер охранного документа: 0002475907
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2bab

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. В жидкостном ракетном двигателе, содержащем бортовой компьютер и источник электроэнергии, турбонасосный агрегат окислителя, содержащий в свою очередь основную турбину, насосы и пусковую турбину,...
Тип: Изобретение
Номер охранного документа: 0002476706
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bad

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. Жидкостный ракетный двигатель, содержащий бортовой компьютер и источник электроэнергии, турбонасосный агрегат окислителя, содержащий в свою очередь основную турбину, насосы и пусковую турбину,...
Тип: Изобретение
Номер охранного документа: 0002476708
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bae

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. Жидкостный ракетный двигатель, содержащий бортовой компьютер и источник электроэнергии, турбонасосный агрегат окислителя, содержащий, в свою очередь, основную турбину, насосы и пусковую турбину,...
Тип: Изобретение
Номер охранного документа: 0002476709
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e8a

Зенитная ракета

Изобретение относится к боевой технике, а именно к зенитным ракетам. Зенитная ракета содержит головную часть, корпус осесимметричной формы, четыре рулевые реактивные сопла на заднем торце корпуса, стабилизаторы на задней части корпуса и на головной части. Внутри корпуса установлены взрывное...
Тип: Изобретение
Номер охранного документа: 0002477445
Дата охранного документа: 10.03.2013
Показаны записи 1-10 из 244.
10.01.2013
№216.012.1828

Летательный аппарат "летающая тарелка"

Изобретение относится к летательным аппаратам вертикального взлета и посадки. Летательный аппарат содержит корпус осесимметричной формы, топливный бак, приборный отсек, газотурбинный двигатель, включающий компрессор, камеру сгорания, турбину, регулируемый сопловой аппарат, включающий сопловые...
Тип: Изобретение
Номер охранного документа: 0002471676
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d79

Мобильный боевой лазерный комплекс и способ повышения боевой эффективности комплекса

Группа изобретений относится к боевой технике. Боевой комплекс наземного лазера содержит боевую машину с боевым лазером в верхней части. Боевая машина выполнена на основе танка, содержащего гусеничную ходовую часть, нижнюю платформу, емкости окислителя и горючего. Боевой лазер установлен выше...
Тип: Изобретение
Номер охранного документа: 0002473039
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.2401

Кислородно-водородный жидкостный ракетный двигатель

Изобретение относится к жидкостным ракетным двигателям, работающим на жидком водороде. Кислородно-водородный жидкостный ракетный двигатель, содержащий камеру сгорания, имеющую систему регенеративного охлаждения сопла горючим, два турбонасосных агрегата, в том числе турбонасосный агрегат...
Тип: Изобретение
Номер охранного документа: 0002474719
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26a9

Летательный аппарат "летающая тарелка"

Изобретение относится к летательным аппаратам вертикального взлета. Летательный аппарат содержит корпус осесимметричной формы, топливный бак, приборный отсек, газотурбинный двигатель. Газотурбинный двигатель содержит компрессор, камеру сгорания, турбину и реактивное сопло. Двигатель установлен...
Тип: Изобретение
Номер охранного документа: 0002475417
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2892

Боевой орбитальный лазер с ядерной накачкой

Устройство относится к боевой технике и может применяться в космических боевых установках с использованием лазера. Боевой орбитальный лазер с ядерной накачкой содержит установленные на орбитальной станции источник энергии и, по меньшей мере, один резонатор. Орбитальная станция выполнена с...
Тип: Изобретение
Номер охранного документа: 0002475906
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2893

Боевой орбитальный лазер с ядерной накачкой

Устройство относится к боевой технике и может быть использовано в космических войсках. Боевой орбитальный лазер с ядерной накачкой содержит резонатор, газодинамический тракт с нанесенным на внутреннюю поверхность внутренней стенки слоем, включающим ядра урана 235, наполненный рабочей газовой...
Тип: Изобретение
Номер охранного документа: 0002475907
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2bab

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. В жидкостном ракетном двигателе, содержащем бортовой компьютер и источник электроэнергии, турбонасосный агрегат окислителя, содержащий в свою очередь основную турбину, насосы и пусковую турбину,...
Тип: Изобретение
Номер охранного документа: 0002476706
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bad

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. Жидкостный ракетный двигатель, содержащий бортовой компьютер и источник электроэнергии, турбонасосный агрегат окислителя, содержащий в свою очередь основную турбину, насосы и пусковую турбину,...
Тип: Изобретение
Номер охранного документа: 0002476708
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2bae

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. Жидкостный ракетный двигатель, содержащий бортовой компьютер и источник электроэнергии, турбонасосный агрегат окислителя, содержащий, в свою очередь, основную турбину, насосы и пусковую турбину,...
Тип: Изобретение
Номер охранного документа: 0002476709
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e8a

Зенитная ракета

Изобретение относится к боевой технике, а именно к зенитным ракетам. Зенитная ракета содержит головную часть, корпус осесимметричной формы, четыре рулевые реактивные сопла на заднем торце корпуса, стабилизаторы на задней части корпуса и на головной части. Внутри корпуса установлены взрывное...
Тип: Изобретение
Номер охранного документа: 0002477445
Дата охранного документа: 10.03.2013
+ добавить свой РИД