×
20.06.2019
219.017.8d14

Результат интеллектуальной деятельности: Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для непрерывного весового дозирования сыпучих материалов. Сущность: устройство содержит основание (1), состоящее из неподвижной платформы, на которой шарнирно закреплена подвижная платформа (2). На подвижной платформе (2) установлены лоток (4) и вибратор (7), соединенный с загрузочным краем лотка (4). Устройство содержит порционный дозатор (8), выполненный в виде бункера, установленного на весоизмерительном устройстве (13). Дозатор (8) снабжен основным (9) и дополнительным (10) шнековыми питателями с регулируемыми приводами (11, 12) вращения. Весоизмерительное устройство (13) и приводы (11, 12) вращения основного (9) и дополнительного (10) шнековых питателей включены в цепь блока (14) управления. Дозируемый материал загружают в дозатор (8). В блок (14) управления вводят следующие данные: заданная производительность дозатора, вес отдельной порции материала, промежутки времени дозирования, максимальная погрешность взвешивания, значения экспериментально определенных коэффициентов. Посредством блока (14) управления рассчитывают производительности основного и дополнительного шнековых питателей, а также промежуток времени, в течение которого осуществляют каждую догрузку материала дополнительным шнековым питателем. После расчета указанных величин начинают процесс дозирования сыпучего материала. Технический результат: повышение точности весового дозирования сыпучих материалов. 2 н. и 2 з.п. ф-лы, 2 ил.

Способ относится к области непрерывного дозирования сыпучих материалов и может быть использован в химической, фармацевтической и других отраслях промышленности, в частности при дозировании порошка KMgO4 в реактор при получения оксида графена для модифицирования пластичных смазок.

Известен способ непрерывного дозирования сыпучих материалов, включающий подачу материала во вращающуюся трубу, высыпание материала непрерывным потоком (А. с. СССР N 838365, БИ №22, 1981).

Недостаток способа заключается в низкой точности. Дозирование осуществляется самой вращающейся трубой, а производительность зависит от множества физико-механических свойств дозируемого сыпучего материала, таких как коэффициенты трения, гранулометрический состав, влажность и т.д. Поскольку указанные свойства даже в пределах одной партии сыпучего материала колеблются, изменяется производительность дозатора, а, следовательно, снижается точность дозирования.

Известен принятый за прототип способ весового непрерывного дозирования сыпучих материалов включающий формирование отдельных порций с одинаковым весом ΔР, подачу порций через равные промежутки времени ΔT в преобразователь этих порций в непрерывный поток при выполнении условия что ΔР/ΔT равно заданной весовой производительности дозирования. Недостаток способа заключается в том, что при формировании отдельных порций взвешивание порции осуществляется при подаче материала, а это невозможно осуществить без динамических воздействий на весоизмерительное устройства, которые снижают точность взвешивания и, следовательно, точность непрерывного дозирования. Динамические воздействия на весоизмерительное устройство являются основной причиной, которая не позволяет повысить точность порционного дозирования. В настоящее время, ведущие мировые производители дозаторов, для уменьшения динамических воздействий на весоизмерительное устройство формируют порцию материала в два этапа. На первом этапе материал подается с достаточно большой производительностью, а когда вес порции становится равным (0,8-0,9) от заданного значения, производительность существенно уменьшают. В данном случае динамические воздействия уменьшаются, но остаются. Кроме этого, значительно возрастает время формирования отдельной порции. В последние годы особенно остро стоит задача обеспечения высокой точности дозирования при отборе проб за малые промежутки времени. Так, например, при подаче катализатора в реактор непрерывного действия по производству углеродных нанотрубок, необходимо обеспечить высокую точность непрерывного дозирования при отборе проб за 60 с и меньше.

Наиболее близким к предлагаемому является устройство для непрерывного весового дозирования сыпучих материалов, содержащее порционный дозатор, основание, состоящее из неподвижной платформы, на которой шарнирно закреплена подвижная платформа, лоток, установленный на подвижной платформе, вибратор, установленный на основании и соединенный с загрузочным краем лотка, блок управления. Недостатком данного устройства является то, что при формировании отдельных порций взвешивание порции осуществляется при подаче материала, а это невозможно осуществить без динамических воздействий на весоизмерительное устройства, которые снижают точность взвешивания и, следовательно, точность непрерывного дозирования.

Технический результат по изобретению-способу заключается в повышении точности непрерывного весового дозирования сыпучих материалов по сравнению со способом прототипом.

Технический результат заявляемого изобретения-устройства заключается в создании устройства, обеспечивающего реализацию предлагаемого способа непрерывного весового дозирования сыпучего материала.

Технический результат по изобретению-способу достигается тем, что в способе непрерывного весового дозирования сыпучего материала, включающем формирование отдельных порций с весом ΔР и максимальной погрешностью взвешивания при подаче материала δР, подачу порций через равные промежутки времени ΔT в преобразователь этих порций в непрерывный поток при выполнении условия, что ΔР/ΔT равно заданной весовой производительности дозирования, формирование отдельных порций осуществляют по частям, формируют первую часть порции ΔP(i) при подаче сыпучего материала с производительностью ql=ΔP/(0,1ΔT), прекращают подачу материала при весе ΔP(i)=ΔP-δР, взвешивают первую часть порции ΔP(i), формируют поэтапно вторую часть порции, причем па каждом этапе добавляют материал с производительностью q2=ΔР/(ΔT) в течение промежутка времени 0,1ΔТ, прекращают подачу материала, путем взвешивания определяют общий вес материала ΔP(i) и повторяют добавление материала до тех пор, пока не будет выполнено условие:

ΔP(i)≥ΔР,

где ΔР - заданный вес отдельной порции, г; ΔP(i) - текущий вес порции, г.

Технический результат по изобретению-способу достигается также и тем, что что добавляют материал с производительностью q2=ΔP/(N2⋅ΔT) до тех пор, пока не будет выполнено условие

ΔP(i)≥2ΔP-ΔP(i-1),

где ΔP(i-1) - вес предыдущей порции, г.

Технический результат по изобретению-устройству достигается тем, что в устройстве для осуществления способа по п. 1, содержащем порционный дозатор, основание, состоящее из неподвижной платформы, на которой шарнирно закреплена подвижная платформа, лоток, установленный на подвижной платформе, вибратор, установленный на основании и соединенный с загрузочным краем лотка, блок управления, порционный дозатор выполнен в виде бункера установленного на весоизмерительном устройстве, снабженного основным и дополнительным шнековыми питателями с регулируемыми приводами вращения, причем весоизмерительное устройство и приводы вращения основного и дополнительного питателя включены в цепь блока управления.

Технический результат по изобретению-устройству достигается также и тем, что приводы основного и дополнительного питателя соединены с основанием с помощью дополнительного кронштейна и передают вращение шнекам основного и дополнительного питателя с помощью подвижных соединений, приводы вертикальных перемещений которых включены в цепь блока управления.

Изобретение поясняется чертежами, на которых показаны: на фиг. 1 схема устройства по п. 3 формулы изобретения; на фиг. 2 - схема устройства по п. 4 формулы изобретения.

Перечень позиций, указанных на чертежах:

1 - основание; 2 - подвижная платформа; 3 - шарнир; 4 - лоток; 5 - передняя опора; 6 - задняя опора; 7 - вибратор; 8 - бункер; 9 - основной шнек; 10 - дополнительный шнек; 11 - привод вращения основного шнека; 12 - привод вращения дополнительного шнека; 13 - весоизмерительное устройство; 14 - блок управления; 15 - узел загрузки; 16 - узел выгрузки; 17 - кронштейн; 18 - дополнительный кронштейн; 19 - подвижное соединение основного шнека 9 с приводом 11; 20 - подвижное соединение дополнительного шнека 10 с приводом 12.

Устройство работает следующим образом. Материал, подлежащий дозированию загружается в бункер 8. В блок управления вводятся следующие данные: заданная производительность дозатора qг⋅с-1; вес отдельной порции материала ΔРг; промежуток времени ΔТс; значение δР, определенное экспериментально; значения коэффициентов N1, N2, N3. В блоке управления рассчитываются производительности основного питателя QОСНг⋅с-1 и дополнительного QДОП=0,005 г⋅с-1, а также промежуток времени равный N3ΔTc., в течение которого осуществляется каждая догрузка материала дополнительным питателем. После расчета указанных величин начинается процесс дозирования сыпучего материала. Цикл дозирования отдельной порции, при использовании устройства по п. 3 ф-лы изобретения включает следующие операции: дозирование первой части порции основным шнеком 9; прекращение дозирования первой части порции, выключением привода 11 по команде блока управления 14; взвешивание бункера 8 с материалом и расчет блоком управления веса первой части порции и необходимую догрузку материала дополнительным шнеком 10; включение привода 12, по команде блока управления 14; выключение привода 12, по команде блока управления 14; взвешивание бункера 8 с материалом и расчет блоком управления общего веса порции.

Цикл дозирования отдельной порции, при использовании устройства по п. 4 ф-лы изобретения включает те же операции, что и по п. 3, но перед операциями взвешивания бункера 8 с материалом, блок управления 14 подает команду на отключение приводов подвижных соединений 19 и 20. Вес бункера 8 с материалом становится меньше (не взвешиваются приводы 11 и 12) и точность определения веса порции увеличивается.

Сравнение предлагаемого способа с прототипом осуществляли на лабораторной установке, в которой бункер с основным и дополнительным питателями установлен на весы с точностью взвешивания 0,0001 г. Для преобразовании отдельных порций в непрерывный поток использовали устройство, выполненное согласно полезной модели к патенту РФ 11353, содержащее цилиндрический наклонный лоток диаметром 30 мм, совершающим крутильные колебания с угловой амплитудой от 10 до 30° и частотой от 10 до 50 с-1. В качестве блока управления использовали персональный компьютер, к которому были подсоединены электронные весы, привод основного шнека и привод дополнительного шнека. Дозировали порошок KMgO4. Заданная производительность дозирования от 0,05 до 0,5 г⋅с-1. В процессе экспериментальной проверки значения N1 изменялись от 0,05 до 0,5, N2 от 10 до 30, N3 от 0,02 до 0,1.

Пример 1.

Заданная производительность дозирования q=0,05 г⋅с-1. Для реализации предлагаемого способа были выбраны следующие параметры: ΔР=1,5 г; ΔT=30;. N1=0,05; N2=10; N3=0,02. При данных параметрах, производительность основного шнекового питателя QОCН=1 г⋅с-1, а производительность дополнительного питателя QДОП=0,005 г⋅с-1. Согласно п. 1 формулы изобретения основной привод 11 вращал основной шнек 9 до тех пор, пока вес материал ΔP(i), поступившего в узел загрузки 15 не становился равным (ΔР-δР). Предварительно, экспериментально было установлено, что при данных параметрах δР=0,075 г. Данная ситуация фиксировалась компьютером 14, в который поступала информация с весов 13. Вес материала ΔP(i), поступившего в узел загрузки рассчитывался, как разность суммарного веса бункера 8, материала, находящегося в бункере, основного привода 11, дополнительного привода 12, шнеков 9 и 10. Компьютер 14 подавал команду на выключение привода 11. После выключения привода 11 компьютер уточнял вес ΔP(i), уже без динамических воздействий на весы 13 и включает привод 12 с производительностью q2=ΔP/(N2⋅ΔT). В данном примере q2=0,005гc-1. Согласно п. 1 формулы изобретения, привод 12 работает в течение промежутка времени N3 ΔT=0,6 с. За это время в узел загрузки 15 поступит примерно 0,045 г материала. Если вес порции, после загрузки материала основным шнеком, был равен (ΔР-δР)=1,425 г, то после первой догрузки материала дополнительным шнеком он станет равным 1,47 г. Компьютер, установив, что не выполнено условие ΔP(i)≥ΔР (см. п1 ф-лы), даст команду на повторное включение привода 12. После второй загрузки вес порции станет равным примерно 1,515 г. Компьютер зафиксирует точный вес материала, поступившего в узел загрузки и выполнение условия ΔP(i)≥ΔР. Таким образом, вес порции, поступивший в узел загрузки 15 и далее в вибрирующий лоток 4 равен 1,515 г. Окончательная погрешность порционного дозирования на данном шаге равна 1%.

Реальная проверка работоспособности предлагаемого способа и сравнение с прототипом осуществлялась следующим образом: установка работала в соответствии с описанным выше регламентом. Из потока материала, высыпающегося из узла выгрузки 16 отбирались пробы в течение промежутков времени ΔТПРОБ равных 60 с. Пробы взвешивались и рассчитывались среднеквадратические отклонения с заданным значением ΔРПРОБ. Для заданной производительности ΔРПРОБ=3,0 г.

При реализации способа прототипа, проба формировалась за один раз, при выполнении условия ΔР(i)≥ΔР-δР. Анализ полученных результатов показал, что при использовании способа прототипа погрешность составляла ±4%, а при использовании предлагаемого способа ±0,6%.

Пример 2.

Заданная производительность дозирования q=0,5 г⋅с-1. Для реализации предлагаемого способа были выбраны следующие параметры: ΔР=15 г; ΔT=30;. N1=0,1; N2=20. При данных параметрах, производительность основного шнекового питателя QОСН=5 г⋅с-1, а производительность дополнительного питателя QДОП=0,025 г⋅с-1. Экспериментально было установлено, что при данных параметрах δР=0,5 г. Отбор проб и обработка результатов проводилась, как и в Примере 1. Анализ полученных результатов показал, что при использовании способа прототипа погрешность составляла ±1%, а при использовании предлагаемого способа ±0,25%.

Аналогичным образом осуществлялась проверка способа по п. 2. ф-лы изобретения.

Пример 3.

Заданная производительность дозирования q=0,05 г⋅с-1. Для реализации предлагаемого способа были выбраны следующие параметры: ΔР=1,5 г; ΔT=30;. N1=0,05; N2=10. При данных параметрах, производительность основного шнекового питателя QОСН=1 г⋅с-1, а производительность дополнительного питателя QДОП=0,005 г⋅с-1. Согласно п. 2 ф-лы изобретения при формировании порции сыпучего материала, первая часть формируется также, как и в Примере 1, а добавляют материал с помощью дополнительного шнекового питетеля до тех пор, пока не будет выполнено условие

ΔP(i)≥2ΔP-ΔP(i-1),

где ΔP(i-1)- вес предыдущей порции, г. Таким образом, на каждом шаге исправляется ошибка, совершенная на предыдущем шаге, т.е. если на предыдущем шаге (i-1) вес порции был на величину δ(i-1)=ΔР-ΔP(i-1) больше или меньше заданного значения ΔР, то на шаге i формируется порция весом меньше или больше ΔР на величину δ(i-1). Анализ полученных результатов показал, что при использовании способа по п. 1 погрешность составляла ±0,6%, а при использовании предлагаемого способа по п. 2 ф-лы изобретения погрешность ±0,3%.

Пример 4

Заданная производительность дозирования q=0,5 г⋅с-1. Для реализации предлагаемого способа были выбраны следующие параметры: ΔР=15 г; ΔT=30;. N1=0,1; N2=20. При данных параметрах, производительность основного шнекового питателя QОСН=5 г⋅с-1, а производительность дополнительного питателя QДОП=0,025 г⋅с-1. Экспериментально было установлено, что при данных параметрах δР=0,5 г. Отбор проб и обработка результатов проводилась, как и в Примере 1. Анализ полученных результатов показал, что при использовании способа по п. 1 погрешность составляла ±0,25%, а при использовании предлагаемого способа по п. 2 ф-лы изобретения погрешность ±0,15%.

Таким образом, предлагаемый способ и устройство для его реализации позволяют повысить точность непрерывного весового двухстадийного дозирования, т.е. запланированный технический результат достигнут.


Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления
Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления
Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления
Источник поступления информации: Роспатент

Показаны записи 61-70 из 118.
29.03.2019
№219.016.edea

Измельчитель корнеклубнеплодов

Изобретение относится к области сельского хозяйства. Устройство содержит бункер с кожухом. Внутри кожуха на валу в подшипниковых узлах свободно вращаются четыре вальца, имеющие на наружной поверхности насечку. Вальцы жестко связаны с валом при помощи водила. Обеспечивается повышение качества...
Тип: Изобретение
Номер охранного документа: 0002683220
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee35

Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002682837
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee78

Поддон для изготовления ригеля с термовкладышами каркаса сборно-монолитного здания

Предложение относится к области производства строительных конструкций и может быть использовано при изготовлении ригеля с термовкладышами каркаса сборно-монолитного здания. Технической результат заявленного предложения заключается в возможности индустриально производить ригель с термовкладышами...
Тип: Изобретение
Номер охранного документа: 0002682832
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee94

Установка для сушки дисперсных растительных материалов в полидисперсном слое инертных тел

Изобретение относятся к сушильной технике, а более конкретно к сушилкам с активным гидродинамическим режимом, предназначенным для сушки дисперсных растительных материалов в закрученном взвешенном слое инертных тел, и может найти применение в производстве пищевых продуктов, медицинских...
Тип: Изобретение
Номер охранного документа: 0002682794
Дата охранного документа: 21.03.2019
04.04.2019
№219.016.fb02

Гравитационный смеситель сыпучих материалов

Гравитационный смеситель относится к области смешивания сыпучих материалов. Технический результат - повышение качества готовой смеси за счет интенсивного перемешивания частиц сыпучего материала в процессе сдвигового движения по наклонным лоткам с поперечными стержнями. В устройстве, состоящем...
Тип: Изобретение
Номер охранного документа: 0002683838
Дата охранного документа: 02.04.2019
19.04.2019
№219.017.1cf6

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Электробаромембранный аппарат трубчатого типа состоит из: цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов...
Тип: Изобретение
Номер охранного документа: 0002685091
Дата охранного документа: 16.04.2019
30.05.2019
№219.017.6b7e

Установка для сушки пастообразных материалов в закрученном взвешенном слое инертных тел

Изобретение относятся к сушильной технике, а более конкретно к сушилкам с активным гидродинамическим режимом, предназначенным для сушки пастообразных материалов, и может найти применение в производстве пищевых продуктов, медицинских препаратов и красителей. Сушилка для пастообразных материалов...
Тип: Изобретение
Номер охранного документа: 0002689495
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6b98

Способ изготовления маркёра горюче-смазочных материалов

Изобретение описывает способ изготовления маркера для горюче-смазочных материалов путем введения концентрата в минеральное моторное масло, отличающийся тем, что приготовление концентрата проводят путем введения в минеральное моторное масло УНМ «Таунит-М» с последующим перемешиванием в мешалке в...
Тип: Изобретение
Номер охранного документа: 0002689420
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.705b

Способ проверки при автоматической сортировке картофеля

Изобретение относится к способам проверки овощей и фруктов при их автоматической сортировке. Способ проверки при сортировке картофеля, транспортируемого по оси х на цепном конвейере, содержащем множество роликов, смонтированных с возможностью свободного вращения каждого вокруг поперечной оси...
Тип: Изобретение
Номер охранного документа: 0002689854
Дата охранного документа: 29.05.2019
31.05.2019
№219.017.7118

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Конструкция аппарата состоит из корпуса с торцевыми и ответными фланцами, трубных решеток, монополярных электродов - анода и катода, прикатодных и прианодных мембран, сборников прианодного и прикатодного пермеата, клемм...
Тип: Изобретение
Номер охранного документа: 0002689615
Дата охранного документа: 28.05.2019
Показаны записи 51-53 из 53.
20.04.2023
№223.018.4b83

Реактор для активации микро- и мезопористого углеродного материала

Изобретение относится к реактору для активации микро- и мезопористого углеродного материала, помещенному в печь и состоящему из цилиндрического корпуса и неподвижной крышки, на которой жестко закреплена ось мешалки, сверху установлены патрубки для подачи инертного газа, пара или воды и выхода...
Тип: Изобретение
Номер охранного документа: 0002768879
Дата охранного документа: 25.03.2022
20.04.2023
№223.018.4b8b

Реактор для активации углеродного материала

Изобретение касается реактора активации углеродного материала, помещенного в печь и состоящего из корпуса с фланцевой крышкой, расположенной сверху корпуса, и имеющий патрубки для ввода инертного газа и вывода газообразных продуктов реакции. Внутри корпуса реактора имеется этажерка из...
Тип: Изобретение
Номер охранного документа: 0002768123
Дата охранного документа: 23.03.2022
21.05.2023
№223.018.6882

Реактор-нейтрализатор для активации углеродного материала

Изобретение относится к технологии и оборудованию получения углеродных материалов с развитой поверхностью и пористостью. Предложен реактор-нейтрализатор для активации углеродного материала, состоящий из камеры активации с соединённой сверху камерой нейтрализации, в которой установлена...
Тип: Изобретение
Номер охранного документа: 0002794893
Дата охранного документа: 25.04.2023
+ добавить свой РИД