×
19.06.2019
219.017.8c2b

Результат интеллектуальной деятельности: СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к высокопрочным деформируемым термически упрочняемым свариваемым сплавам на основе алюминия, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники, таких как сварные топливные баки для работы при температуре от +20°С до -253°С, различные элементы силового набора и обшивки фюзеляжа и крыла, как сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175°С до -70°С. Технической задачей предлагаемого изобретения является создание сплава с повышенными характеристиками пластичности и вязкости разрушения, пониженной скоростью роста трещины усталости и повышенной технологической пластичностью при холодной деформации. Изделия из этого сплава будут иметь пониженную массу, повышенные характеристики прочности и надежности при эксплуатации. Сплав содержит следующие компоненты, мас. %: медь 2,5 - 3,5; литий 1,5 - 1,95; цирконий 0,05 - 0,15; скандий 0,01 - 0,15; кальций 0,001 - 0,05; хром 0,01 - 0,3; водород 1,5 · 10 - 5,0 · 10; по крайней мере один элемент из группы, содержащей магний 0,01 - 0,6; марганец 0,005 - 0,6; титан 0,005 - 0,009; ванадий 0,01 - 0,15; бор 0,0002 - 0,07; церий 0,005 - 0,2; железо 0,01 - 0,5 и по крайней мере один элемент из группы, содержащей цинк 0,01 - 0,8; бериллий 0,0001 - 0,2; олово 0,005 - 0,1, натрий 0,0003 - 0,001; никель 0,005 - 0,15; остальное алюминий. 2 с.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочным деформируемым термическим упрочняемым свариваемым сплавам пониженной плотности системы Al-Cu-Li, предназначенным для применения в качестве конструкционных материалов в авиакосмической технике. Из этого сплава изготавливаются такие изделия, как: сварные топливные баки для работы при температуре от +20oC до -253oC, различные элементы силового набора и обшивки фюзеляжа и крыла, как в сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175oC до -70oC.

Известен и применяется в промышленности сплава системы Al-Cu-Li марки 1230 (ВАД23) следующего состава, мас.%:
Медь - 4,8 - 5,8
Литий - 0,9 - 1,4
Марганец - 0,4 - 0,8
Кадмий - 0,1 - 0,25
Алюминий - Остальное
(см. Структура и свойства полуфабрикатов из алюминиевых сплавов. Алюминиевые сплавы. Справочник. 2-е изд., М., "Металлургия", 1984, с. 396).

Однако этот сплав не обладает достаточно низкой плотностью, имеет низкий модуль упругости и в искусственно состаренном состоянии пониженную пластичность и повышенную чувствительность к концентраторам напряжений. Сплав не сваривается, непригоден для работы при криогенных температурах. Изделия из этого сплава имеют ограниченное применение, используются в качестве стабилизаторов летательных аппаратов с малым ресурсом.

Известен также сплав марки 2090 американской фирмы ALCOA. Сплав имеет следующий состав, мас.%:
Медь - 2,4 - 4,0
Литий - 1,4 - 2,7
Магний - 0 - 0,8
Хром - 0 - 0,3
Цирконий - 0 - 0,1
Бериллий - 0 - 0,02
Кремний - 0 - 0,1
Марганец - 0 - 0,1
Алюминий - Остальное
(см. патент Франции N 2.561.260, МКИ C 22 C 21/12).

Этот сплава при достаточно высокой удельной прочности (отношение предела прочности к плотности сплава) имеет низкие характеристики пластичности и трещиностойкости, поэтому применяется для обшивки крыла только в сжатой зоне и не применяется в сварных конструкциях.

Наиболее близким по технической сущности и достигаемому эффекту является свариваемый сплав системы Al-Cu-Li следующего химического состава, мас.%:
Медь - 1,4 - 6,0
Литий - 1,0 - 4,0
Цирконий - 0,02 - 0,3
Титан - 0,01 - 0,15
Бор - 0,0002 - 0,07
Церий - 0,005 - 0,15
Железо - 0,03 - 0,25
по крайней мере один из элементов из группы, содержащей, мас.%:
Неодим - 0,0002 - 0,1
Скандий - 0,1 - 0,35
Ванадий - 0,01 - 0,15
Марганец - 0,05 - 0,6
Магний - 0,6 - 2,0
Алюминий - Остальное
(см. патент РФ 1584414, БИ N 19, 1994 г.).

Сплав обладает хорошей свариваемостью и повышенными прочностными свойствами.

Недостатками этого сплава являются низкие значения пластичности, вязкости разрушения, высокая скорость развития трещины усталости, а также низкая технологическая пластичность при холодной деформации. Поэтому этот сплав непригоден для применения в авиационной технике и может найти ограниченное применение в некоторых сварных изделиях ракетной техники.

Технической задачей предлагаемого изобретения является создание сплава с повышенными характеристиками пластичности и вязкости разрушения, пониженной скоростью роста трещины усталости и повышенной технологической пластичностью при холодной деформации. Изделия из этого сплава будут иметь пониженную массу, повышенные характеристики прочности и надежности при эксплуатации.

Для достижения поставленной задачи предлагается сплав на основе алюминия следующего химического состава, мас.%:
Медь - 2,5 - 3,5
Литий - 1,5 - 1,95
Цирконий - 0,05 - 0,15
Скандий - 0,01 - 0,15
Кальций - 0,001 - 0,05
Хром - 0,01 - 0,3
Водород - 1,5 · 10-5 - 5,0 · 10-5
по крайней мере один элемент из группы, содержащей, мас.%:
Магний - 0,01 - 0,6
Титан - 0,005 - 0,009
Бор - 0,0002 - 0,007
Марганец - 0,005 - 0,6
Ванадий - 0,01 - 0,15
Церий - 0,005 - 0,2
Железо - 0,01 - 0,5
и по крайней мере один элемент из группы, содержащей, мас.%:
Цинк - 0,01 - 0,8
Олово - 0,0005 - 0,1
Никель - 0,005 - 0,15
Бериллий - 0,0001 - 0,2
Натрий - 0,0003 - 0,001
Алюминий - Остальное
В сплаве поддерживается определенное соотношение концентраций меди и лития, необходимое для достижения относительно низкой плотности. При этом сохранение положительного влияния меди на прочностные свойства достигается за счет введения в сплав дополнительных легирующих элементов.

Введение в сплав кальция повышает технологичность при холодной деформации, так как кальций связывает кремний (примесь в алюминии) и снижает поверхностное натяжение, способствуя образованию более округлой формы выделившихся избыточных интерметаллидов.

Хром вместе с цирконием, скандием и водородом, который образует дисперсные гидриды лития, способствуют формированию однородной мелкозернистой структуры в полуфабрикатах и повышению технологической пластичности при холодной прокатке, повышению характеристик вязкости разрушения и улучшению свариваемости всеми видами сварки.

Натрий, бериллий, олово, никель, цинк измельчают частицы кремния, а также связывают свободный кремний, что приводит к повышению технологичности при прокатке.

Магний, титан, бор, ванадий, марганец, железо и церий способствуют упрочнению сплава, облагораживают форму выделившихся избыточных интерметаллидов, способствуя округлости их формы, что, в свою очередь, благотворно сказывается на технологичности сплава. Изделия из предлагаемого сплава, такие как: сварные топливные баки, в том числе для низких температур, различные элементы силового набора и обшивки фюзеляжа и крыла будут иметь пониженную массу, повышенные характеристики прочности и надежности при эксплуатации.

Пример осуществления:
Из слитков, состав которых приведен в табл. 1, после гомогенизации при температуре 530oC в течение 24 часов, были изготовлены листы. Листы изготавливались путем горячей прокатки при температуре 430oC до толщины 4,5 мм и затем после отжига при температуре 400oC путем холодной прокатки до толщины 2,5 мм. Листы подвергали закалке с температуры 530oC с охлаждением в воде, правке растяжением со степенью деформации 1,5% и искусственному двухступенчатому старению по режиму: первая ступень - при температуре 130oC, 8 час и вторая ступень - при температуре 160oC, 14 час.

Состав сплава N 1 соответствует прототипу, остальные сплавы N 2-10 являются предлагаемыми.

Образцы из листов испытывали при статическом растяжении с определением предела прочности, предела текучести, относительного удлинения, определяли характеристики вязкости разрушения и трещиностойкости (Kcy, СРТУ). Технологическая пластичность оценивалась по уровню степени холодной деформации при холодной прокатке, при которой появлялись боковые трещины величиной более 10 мм (εКР) .

Из табл. N 2 видно, что предлагаемый состав нового сплава превосходит известный сплав (прототип) по характеристике вязкости разрушения (Kcy) в 1,4 - 1,6 раз, по пластичности в 1,6 - 2,0 раз по технологической пластичности при холодной деформации в 1,9 - 2,3 раза. Новый сплав имеет меньшую скорость развития трещины усталости (СРТУ) в 1,8 - 3,0 раз при практически одинаковом уровне предела прочности и предела текучести.

Таким образом, предлагаемый сплав обеспечивает достижение поставленной цели - повышение характеристик пластичности и вязкости разрушения, понижение скорости роста трещины усталости и повышение технологической пластичности при холодной деформации, по сравнению с известными сплавами.

Новый сплав с такими повышенными характеристиками и с пониженной плотностью позволяет изготавливать необходимую номенклатуру полуфабрикатов на существующем металлургическом оборудовании. Применение полуфабрикатов из предлагаемого сплава в изделиях, таких как: сварные топливные баки для работы при температуре от +20oCo до -253oC, различные элементы силового набора и обшивки фюзеляжа и крыла, как в сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175oC до -70oC позволит обеспечить снижение их массы на 15 - 35%, повысить надежность и ресурс эксплуатации.

1.Сплавнаосновеалюминия,содержащиймедь,литий,цирконий,скандий,покрайнеймереодинэлементизгруппы,содержащеймагний,титан,бор,марганец,ванадий,железо,церий,отличающийсятем,чтоондополнительносодержиткальций,хром,водородипокрайнеймереодинэлементизгруппы,содержащейцинк,олово,никель,бериллий,натрийприследующемсоотношениикомпонентов,мас.%:Медь-2,5-3,5Литий-1,5-1,95Цирконий-0,05-0,15Скандий-0,01-0,15Кальций-0,001-0,05Хром-0,01-0,3Водород-1,5·10-5,0·10покрайнеймереодинэлементизгруппы,содержащей:Магний-0,01-0,6Титан-0,005-0,009Бор-0,0002-0,007Марганец-0,005-0,6Ванадий-0,01-0,15Церий-0,005-0,2Железо-0,01-0,5ипокрайнеймереодинэлементизгруппы,содержащей:Цинк-0,01-0,8Олово-0,005-0,1Никель-0,005-0,15Бериллий-0,0001-0,2Натрий-0,0003-0,001Алюминий-Остальное2.Изделиеизсплаванаосновеалюминия,отличающеесятем,чтовыполненоизсплаваследующегохимическогосостава,мас.%:Медь-2,5-3,5Литий-1,5-1,95Цирконий-0,05-0,15Скандий-0,01-0,15Кальций-0,001-0,05Хром-0,01-0,3Водород-1,5·10-5,0·10покрайнеймереодинэлементизгруппы,содержащей:Магний-0,01-0,6Титан-0,005-0,009Бор-0,0002-0,007Марганец-0,005-0,6Ванадий-0,01-0,15Церий-0,005-0,2Железо-0,01-0,5ипокрайнеймереодинэлементизгруппы,содержащей:Цинк-0,01-0,8Олово-0,005-0,1Никель-0,005-0,15Бериллий-0,0001-0,2Натрий-0,0003-0,001Алюминий-Остальное1
Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
19.06.2019
№219.017.8c32

Способ азотирования жаропрочных сплавов на никелевой, железоникелевой, никель-кобальтовой и кобальтовой основе

Способ азотирования жаропрочных сплавов на никелевой, железоникелевой, никель-кобальтовой и кобальтовой основе включает продувку потоком азота, нагрев до 1150-1250°С, последующую выдержку при этой температуре в потоке азота, который подается со скоростью 3-10 л/мин, и охлаждение со скоростью не...
Тип: Изобретение
Номер охранного документа: 02164964
Дата охранного документа: 10.04.2001
Показаны записи 21-30 из 68.
10.04.2019
№219.017.0a7c

Способ испарения и конденсации токопроводящих материалов

Изобретение может быть использовано в авиационном и энергетическом газотурбиностроении. Способ включает вакуумно-дуговое испарение токопроводящего материала при наложении на поверхность испарения магнитного поля и при радиационном охлаждении испаряемого материала при температуре его нагрева на...
Тип: Изобретение
Номер охранного документа: 0002164549
Дата охранного документа: 27.03.2001
10.04.2019
№219.017.0a7d

Способ получения диффузионного алюминидного покрытия на изделии

Способ получения диффузионного алюминидного покрытия на изделии включает накопление на поверхности изделия элементов, легирующих покрытие, причем удельный прирост массы ΔМ каждого из элементов на единицу поверхности изделия выбирают из соотношения ΔM = δρh, гдe δ - мaccoвaя доля i-го...
Тип: Изобретение
Номер охранного документа: 02164965
Дата охранного документа: 10.04.2001
10.04.2019
№219.017.0afb

Никелевый жаропрочный сплав для монокристального литья

Никелевый жаропрочный сплав для монокристального литья содержит следующие компоненты, мас.%: хром 2,0-3,0, кобальт 9,5-12,0, алюминий 5,5-6,2, вольфрам 0,1-1,8, молибден 1,6-2,4, тантал 7,8-10,0, рений 7,8-10,0, церий 0,002-0,02, лантан 0,002-0,02, неодим 0,0005-0,01, иттрий 0,002-0,02, углерод...
Тип: Изобретение
Номер охранного документа: 02153021
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b02

Литейный жаропрочный сплав на основе никеля

Литейный жаропрочный сплав на основе никеля содержит следующие компоненты, мас. %: хром 6,5-10,5, кобальт 6,0-10,0, молибден 2,7-4,0, алюминий 4,8-5,7, титан 4,2-4,7, углерод 0,06-0,20, бор 0,005-0,015, цирконий 0,01-0,02, вольфрам 1,0-1,8, ниобий 0,5-1,0, церий 0,002-0,015, один элемент из...
Тип: Изобретение
Номер охранного документа: 02153020
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b13

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к литейному производству и может быть использовано при получении отливок с направленной и монокристаллической структурой, в частности лопаток ГТД и ГТУ. Устройство содержит вакуумную камеру, внутри которой размещены индукционная печь, печь подогрева форм с наружной...
Тип: Изобретение
Номер охранного документа: 02152844
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b15

Высокопрочная конструкционная сталь

Изобретение относится к металлургии, в частности к созданию высокопрочных конструкционных сталей, которые могут быть использованы для изготовления крупногабаритных высоконагруженных деталей в различных областях машиностроения, например в авиа- и космической технике. Предложенная высокопрочная...
Тип: Изобретение
Номер охранного документа: 02155820
Дата охранного документа: 10.09.2000
Тип: Изобретение
Номер охранного документа: 0000070393
Дата охранного документа: 31.01.1948
Тип: Изобретение
Номер охранного документа: 0000079554
Дата охранного документа: 28.02.1950
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d1f

Способ изготовления диска из высоколегированного жаропрочного никелевого сплава

Изобретение относится к области металлургии и может быть использовано при изготовлении дисков ГТД из высоколегированных жаропрочных никелевых сплавов. Предложен способ изготовления диска из высоколегированного жаропрочного никелевого сплава, включающий отжиг слитков, охлаждение на воздухе,...
Тип: Изобретение
Номер охранного документа: 0002256721
Дата охранного документа: 20.07.2005
+ добавить свой РИД