×
19.06.2019
219.017.89c9

Результат интеллектуальной деятельности: СПОСОБ ЛИНЕЙНОЙ СВАРКИ ТРЕНИЕМ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при соединении трением деталей в виде пера лопатки и диска турбомашины, в частности при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление сварки, при заданной амплитуде и частоте относительного перемещения деталей вдоль их контактных поверхностей. Стадию проковки осуществляют после прекращения возвратно-поступательных перемещений заготовок приложением давления проковки. Проковку детали совмещают с электроимпульсной обработкой при плотности электрического тока от 10 до 200 МА/м. Нагрев трением производят в два этапа с разной амплитудой и частотой. Давление прижатия составляет от 30 до 180 МПа, а давление проковки от 160 до 320 МПа. Коэффициент удельной подводимой мощности при сварке составляет от 2,2 до 3,2 кВт. Совмещение стадии проковки с упрочняющей электроимпульсной обработкой обеспечивает повышение качества сварных соединений и высокие эксплуатационные свойства деталей. 6 з.п. ф-лы, 1 пр.

Изобретение относится к сварке трением и может быть использовано в различных отраслях машиностроения, например при производстве или ремонте моноблоков турбомашин из титановых сплавов.

Нагрев поверхностей соединяемых сваркой трением деталей может осуществляться либо за счет вращения одной из деталей относительно другой, либо за счет линейного колебательного движения [например, европатент №0719614, МПК B23K 20/12], либо за счет углового колебательного движения [европатент №0624420, МПК B23K 20/12 и патент РФ №2043891, МПК B23K 20/12]. При этом наиболее распространенными и разработанными способами сварки трением являются ротационная сварка и перемешивающая сварка трением [Сварка трением: Справочник / В.К.Лебедев, И.А.Черненко, Р.Михальски и др.; Под общ. ред. В.К.Лебедева, И.А.Черненко, В.И.Билля. - Л.: Машиностроение. Ленингр. отд-ние, 1987. - 236 с.].

Известен также способ сварки трением [А.С. СССР №1512740, опубл. 07.10.89, БИ №37], включающий стадию нагрева, на которой детали приводят в относительное вращение при постоянном приложении контактного давления, и стадию проковки, которую осуществляют после прекращения вращения. Сварка по этому способу производится в температурном интервале, обеспечивающем отсутствие условий закалки быстрорежущей стали в зоне термического влияния.

Недостатками известных способов сварки трением являются либо их непригодность [А.С. СССР №1512740], либо низкая стабильность качества сварных соединений [европатент №0624420, МПК В23К 20/12 и патент РФ №2043891, МПК В23К 20/12] применительно для таких деталей, как лопатки турбомашин, вследствие высокой вероятности возникновения непроваров и подрезов, вызываемых выхватыванием поверхностных слоев металла, прилегающего к стыку, гратом. Эти недостатки вызываются неравномерностью нагрева стыка по всему сечению.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ линейной сварки трением деталей из сплавов, включающий стадию нагрева, на которой заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного перемещения заготовок вдоль их контактных поверхностей, и стадию проковки, осуществляемую после прекращения возвратно-поступательных перемещений заготовок приложением давления проковки [Патент США №7,125,227, МПК B23K 20/12 Process for manufacturing or repairing a monobloc bladed disc, 2006 г.]. Указанный способ позволяет изготавливать моноблоки лопаточных дисков турбомашин или производить их ремонт.

Процессы линейной сварки трением становятся ключевыми технологиями формирования сварных соединений из трудносвариваемых материалов и могут быть широко использованы в ремонтном производстве. Достоинством линейной сварки трением является минимальная подготовка поверхностей к свариванию. Линейная сварка трением достаточно активно применяется в авиадвигателестроении для соединения лопаток с дисками [Corzo M., Torres Y., Anglada M., Mateo A. Fracture behaviour of linear friction welds in titanium alloys. // Anales de la Mecanica de Fractura. - V.1, 2007. - Pp.75-80].

Однако известный способ линейной сварки трением деталей [Патент США №7,125,227, МПК B23K 20/12. Process for manufacturing or repairing a monobloc bladed disc, 2006 г.]. не позволяет получать качественные сварные соединения, обеспечивающие высокие эксплуатационные свойства деталей.

Задача, решаемая предлагаемым способом, заключается в повышении качества сварных соединений, обеспечивающих высокие эксплуатационные свойства деталей, за счет совмещения стадии проковки с упрочняющей электроимпульсной обработкой.

Решение поставленной задачи достигается тем, что в способе линейной сварки трением деталей из титановых сплавов, включающем стадию нагрева, на которой заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного перемещения деталей вдоль их контактных поверхностей, и стадию проковки, осуществляемую после прекращения возвратно-поступательных перемещений деталей приложением давления проковки, в отличие от прототипа проковку детали совмещают с электроимпульсной обработкой, причем электроимпульсную обработку проводят при плотности электрического тока от 10 до 200 МА/м2.

Решение поставленной задачи достигается также тем, что в способе линейной сварки трением деталей из титановых сплавов нагрев производят в два этапа: на первом этапе задают амплитуду от 3 до 5 мм и частоту от 15 до 70 Гц, а на втором этапе задают амплитуду от 1 до 2 мм и частоту от 40 до 80 Гц, а величину давления процесса сварки берут равной от 30 до 180 МПа, а величину давления проковки равной от 160 до 320 МПа, причем время первого этапа нагрева берут от 0,3 до 6 с, а время второго этапа нагрева берут равным от 0,2 до 2 с, при этом возможны следующие варианты способа: интервал времени остановки возвратно-поступательных перемещений деталей составляет от 0,05 до 0,3 с; в качестве свариваемых деталей из титановых сплавов используют перо лопатки и диск турбомашины.

Решение поставленной задачи достигается также тем, что в способе линейной сварки трением деталей из титановых сплавов коэффициент удельной подводимой мощности при сварке деталей турбомашин выбирают от 2,2 до 3,2 кВт.

Решение поставленной задачи достигается также тем, что в способе линейной сварки трением деталей из титановых сплавов нагрев осуществляют в температурном интервале сверхпластичности металла одной из заготовок.

В процессе возвратно-поступательного движения деталей подлежащие свариванию поверхности прижимаются для образования плотного контакта. Генерируемая в плоскости сварки теплота способствует пластической деформации приповерхностных объемов свариваемых материалов деталей. В процессе сварки вязкопластичные слои металла перемещаются к границам свариваемой поверхности. При этом происходит удаление окислов и загрязнений, которые могут присутствовать в зоне сварки. Короткая длительность процесса сварки (несколько секунд) обеспечивает малую зону термического влияния. Для обеспечения точности сварки необходимо предусматривать мероприятия для устранения перекосов и погрешностей расположения свариваемых поверхностей. Процесс формирования сварного шва достаточно сложен и определяется трибологическими свойствами контакта, особенностями протекания процессов внутреннего трения и пластической деформации, а также физико-химическими и металлургическими аспектами.

Для осуществления интенсивного нагрева поверхностей стыка соединяемых заготовок, а также для качественного удаления загрязнений и окислов из зоны контакта необходимо производить подвод значительной энергии, которая определяется, при прочих равных условиях, частотой и амплитудой возвратно-поступательного движения заготовок, а также усилием их прижатия. При этом одна и та же величина подводимой энергии может быть получена при различном сочетании указанных параметров процесса сварки и свойства сварного соединения во всех этих случаях будут различаться.

Первые стадии нагрева места стыка деталей требуют интенсивного нагрева и значительных амплитуд для удаления загрязнений через флэш. Так, например, диапазон амплитуд от 1 до 2 мм недостаточен для удаления загрязнений и окислов из зоны контакта деталей. В то же время качественное удаление загрязнений и окислов происходит при амплитудах от 3 до 5 мм.

В то же время для более качественного формирования шва, с меньшими значениями остаточных напряжений и дефектов, более целесообразен плавный переход от стадии нагрева к стадии проковки.

Так, при сварке известным способом титановых сплавов, таких, например как Ti-6Al-4V, в зоне центра сварки микроструктура из первоначальной бимодальной α-β, а в процессе трения полностью переходит в однофазную β-структуру. Измерение температуры в процессе сварки показало, что в зоне сварки она превышает 1100°С, т.е. превышает температуру β-перехода в 995°С. В зоне сварки существенно уменьшается размер зерна: он составляет от 3.8 до 5.3 мкм против 12.5 мкм в исходном материале. Исследование характера и величин остаточных напряжений и деформаций после сварки сплава Ti-6Al-4V показало, что изменение деформаций и напряжений максимально в направлении нормали к поверхности сварного шва.

В связи с этим стадия нагрева в предлагаемом способе разбивается на два этапа. Функцией первого этапа является интенсивный разогрев поверхности и удаление окислов и загрязнений. Функцией второго этапа является повышение качества формирования сварного соединения и более плавный переход к стадии проковки. При первом этапе нагрева происходит интенсивное перемешивание металла в зоне физического контакта и вовлечение в нее еще большего объема материала. После окончания первого этапа, параметры которого подбираются экспериментально в зависимости от конкретного сплава, размеров и геометрии свариваемых заготовок, обеспечивается более мягкий режим трения по всей контактной поверхности, после чего при отключении привода возвратно-поступательного движения заготовок осуществляют проковку для окончательного формирования сварного соединения.

Кроме того, применение упрочняющей электроимпульсной обработки позволяет значительно повысить эксплуатационные свойства сварного соединения. Воздействие мощных импульсов электрического поля (электрический ток плотности порядка от 10 до 200 MA/м2) на дефектную структуру материала лопатки приводит к дополнительному локальному тепловому воздействию, особенно интенсивно проявляющемуся в области его структурных дефектов. Это приводит к значительной интенсификации процессов восстановления структуры материала в областях с повышенной плотностью дефектов, которые протекают без перегрева основной массы металла обрабатываемой детали. Кроме того, дополнительным преимуществом от использования импульсов электрического поля является эффект упрочнения [Зуев Л.Б., Соснин О.В., Подборонников С.Ф. и др. // ЖТФ. 2000. Т.70. Вып.3. С.24-26]. Наличие же значительных структурных дефектов материала лопаток, особенно в области сварного соединения, позволяет указанному эффекту наиболее сильно проявиться именно в дефектной зоне материала соединенных деталей.

Способ осуществляется следующим образом. На собранные встык и зафиксированные соединяемые детали устанавливают одно из известных устройств для линейной сварки трением [например, патент РФ №2280546, МПК B23K 20/12. Инструмент для фиксации лопаток и его применение для сварки лопаток трением. Опубл. 27.07.2006 г. Бюл. №21]. Затем задают требуемое усилие прижатия, выбирая его из диапазона значений от 30 до 180 МПа, устанавливают требуемые значения первого и второго этапов стадии нагрева и усилие проковки. Причем на первом этапе нагрева величину амплитуды задают из диапазона от 3 до 5 мм и частоту из диапазона от 15 до 70 Гц, а на втором этапе задают амплитуду от 1 до 2 мм и частоту от 40 до 80 Гц. Величину давления проковки выбирают из диапазона значений от 160 до 320 МПа, а плотность электрического тока процесса электроимпульсной обработки, совмещенной с проковкой, выбирают из диапазона от 10 до 200 MA/м2. Затем включают сварочное устройство, запрограммированное согласно выбранным параметрам процесса, и производят весь цикл сварки с упрочняющей электроимпульсной обработкой.

Пример. С целью оценки эксплуатационных свойств деталей из титановых сплавов (ВТ6, ВТ14, ВТ3-1, ВТ22), полученных по предлагаемому способу и способу-прототипу, были проведены следующие исследования. Были изготовлены две партии лопаток. Первая партия лопаток изготавливалась по способу-прототипу, а вторая - в соответствии с предлагаемым способом.

Линейную сварку трением деталей по способу-прототипу осуществляли по следующим режимам. Амплитуда: 3 мм (неудовлетворительный результат (Н.Р.); 4 мм (Н.Р.); 5 мм (Н.Р.). Частота 15 Гц (Н.Р.); 30 Гц (Н.Р.); 45 Гц (Н.Р.); 60 Гц (Н.Р.); 70 Гц (Н.Р.). Величина давления процесса сварки 30 МПа (Н.Р.); 60 МПа (Н.Р.); 120 МПа (Н.Р.); 180 МПа (Н.Р.). Величина давления проковки 160 МПа (Н.Р.); 260 МПа (Н.Р.); 320 МПа (Н.Р.).

Линейную сварку трением деталей по предлагаемому способу осуществляли по следующим режимам. Первый этап нагрева: амплитуда: 2 мм (-неудовлетворительный результат (Н.Р.); 3 мм; 4 мм; 5 мм; 5 мм (Н.Р.). Частота 12 Гц (H.P.); 15 Гц; 30 Гц; 45 Гц; 60 Гц; 70 Гц; 75 Гц; (Н.Р.). Величина давления процесса сварки 26 МПа (Н.Р.); 30 МПа; 60 МПа; 120 МПа; 180 МПа; 190 МПа (Н.Р.). Время: 0,2 с (Н.Р.); 0,3 с; 6 с; 7 с (Н.Р.). Второй этап нагрева: Амплитуда: 0,5 мм (Н.Р.); 1 мм; 2 мм; 3 мм (Н.Р.). Частота 30 Гц (Н.Р.); 40 Гц; 60 Гц; 80 Гц; 85 Гц; (Н.Р.). Величина давления процесса сварки 26 МПа (Н.Р.); 30 МПа; 60 МПа; 120 МПа; 180 МПа; 190 МПа (Н.Р.). Время: 0,1 с (Н.Р.); 0,2 с; 1 с; 2 с; 3 с (Н.Р.). Время остановки возвратно-поступательных перемещений заготовок составляло: 0,03 с (Н.Р.); 0,05 с; 0,3 с; 0,4 с (Н.Р.).

Величина давления проковки 150 МПа (Н.Р.); 160 МПа; 260 МПа; 320 МПа; 330 МПа (Н.Р.).

Плотность электрического тока процесса электроимпульсной обработки 8 MA/м2 (H.P.); 10 MA/м2; 30 MA/м2; 60 MA/м2; 100 MA/м2; 140 MA/м2; 200 MA/м2; 210 MA/м2 (H.P.).

Коэффициент удельной подводимой мощности PI брался равным 2,0 кВт (H.P.); 2,2 кВт; 2,6 кВт; 3,2 кВт; 3,4 кВт (Н.Р.). Коэффициент удельной подводимой мощности PI определялся по формуле:

, Вт

где а - амплитуда, f - частота, Р - давление трения, А - площадь поверхности сварки, k1 - коэффициент, учитывающий геометрию сечений контактных поверхностей (для лопаток k1 брался равным: 1,03 (Н.Р.); 1,04; 1,06; 1,08; 1,09 (Н.Р.)), k2 - коэффициент, учитывающий изменение условий теплоотвода от контактных поверхностей (для контакта типа блиск k2 брался равным: 1,01 (Н.Р.); 1,02; 1,03; 1,06; 1,07 (Н.Р.).

Нагрев в предлагаемом способе линейной сварки трением осуществлялся также в температурном интервале сверхпластичности металла одной из заготовок (параметры процессов сварки которых для приведенных выше титановых сплавов являются ноу-хау). (Н.Р.) - означает появление технологических дефектов в сварном соединении или низкие эксплуатационные свойства.

Испытания, проведенные на выносливость и циклическую прочность лопаток из титановых сплавов в условиях эксплуатационных температур (при 300-450°С) на воздухе, показали, что условный предел выносливости (σ-1) лопаток в среднем составляет по способу-прототипу 290-325 МПа (Н.Р.), а по предлагаемому способу 445-460 МПа.

Повышение предела выносливости у лопаток, полученных сваркой по предлагаемому способу, указывает на то, что при применении одного из следующих вариантов проведения линейной сварки трением: стадия нагрева, на которой заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного перемещения заготовок вдоль их контактных поверхностей, и стадия проковки, осуществляемая после прекращения возвратно-поступательных перемещений заготовок приложением давления проковки; совмещение проковки детали с электроимпульсной обработкой; проведение электроимпульсной обработки проводят при плотности электрического тока от 10 до 200 MA/м2; проведение нагрева в два этапа: на первом этапе задают амплитуду от 3 до 5 мм и частоту от 15 до 70 Гц, а на втором этапе задают амплитуду от 1 до 2 мм и частоту от 40 до 80 Гц, а величину давления процесса сварки берут равной от 30 до 180 МПа, а величину давления проковки равной от 160 до 320 МПа, причем время первого этапа нагрева берут от 0,3 до 6 с, а время второго этапа нагрева берут равным от 0,2 до 2 с; время остановки возвратно-поступательных перемещений заготовок составляет от 0,05 до 0,3 с; в качестве свариваемых заготовок из титановых сплавов используют перо лопатки и диск турбомашины; коэффициент удельной подводимой мощности при сварке деталей турбомашин выбирают от 2,2 до 3,2 кВт; осуществление нагрева в температурном интервале сверхпластичности металла одной из заготовок позволяет решить поставленную в предлагаемом техническом решении задачу - повысить качество сварных соединений и обеспечить высокие эксплуатационные свойства деталей за счет совмещения стадии проковки с упрочняющей электроимпульсной обработкой.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 103.
10.11.2013
№216.012.8020

Устройство защиты магнитоэлектрического генератора от короткого замыкания (варианты)

Изобретение относится к области машиностроения и может быть использовано в магнитоэлектрических генераторах. Технический результат заключается в повышении эксплуатационного ресурса обмотки статора и уменьшении времени отключения обмоток магнитоэлектрического генератора при коротком замыкании,...
Тип: Изобретение
Номер охранного документа: 0002498473
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8189

Магнитная игрушка

Магнитная игрушка содержит немагнитный корпус и постоянные магниты. При этом немагнитный корпус выполнен в виде пистолета. Причем постоянные магниты установлены одноименными полюсами относительно друг друга и выполнены в виде неподвижного постоянного магнита и подвижного постоянного магнита с...
Тип: Изобретение
Номер охранного документа: 0002498837
Дата охранного документа: 20.11.2013
10.01.2014
№216.012.94e4

Способ определения углов искривления скважины

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах,...
Тип: Изобретение
Номер охранного документа: 0002503810
Дата охранного документа: 10.01.2014
10.03.2014
№216.012.a8ab

Многофункциональное походное спасательное устройство

Изобретение относится к индивидуальным походным средствам спасения для туристов, военнослужащих и людей, находящихся в зоне стихийных бедствий. Задачей изобретения является создание многофункционального походного спасательного устройства с расширенными функциональными возможностями при...
Тип: Изобретение
Номер охранного документа: 0002508894
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b173

Устройство комплексной очистки бессточных водоемов

Изобретение относится к охране окружающей среды и методам экореабилитации водоемов, в частности сбора загрязняющих веществ из толщи воды бессточных водоемов. Устройство содержит металлический каркас, внутри которого расположена емкость из полимерного материала с адсорбентом. Емкость имеет...
Тип: Изобретение
Номер охранного документа: 0002511142
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b77c

Способ контроля состояния грузов при перевозках

Изобретение относится к способам, предназначенным для контроля и фиксации параметров колебаний. Техническим результатом заявленного изобретения является возможность контроля и записи на запоминающее устройство параметров колебаний во всех координатах. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002512699
Дата охранного документа: 10.04.2014
27.06.2014
№216.012.d846

Способ дистанционного тестирования приборов акустического каротажа в полевых условиях

Изобретение относится к нефтепромысловой геофизике и может быть использовано в процессе акустического каротажа. Согласно заявленному изобретению обеспечивается моделирование реального акустического волнового сигнала и полное дистанционное тестирование прибора акустического каротажа в полевых...
Тип: Изобретение
Номер охранного документа: 0002521144
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dcad

Ветроустановка

Изобретение относится к ветроэнергетике. Ветроустановка содержит воздухозаборник с расположенным внутри него ветроколесом с лопастями, прикрепленными к верхнему и нижнему кольцам, опирающимся на центрирующие ролики, установленные на валах роторов преобразователей энергии, расположенные сверху и...
Тип: Изобретение
Номер охранного документа: 0002522271
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e387

Способ аргонодуговой обработки сварных соединений, полученных линейной сваркой трением

Изобретение может быть использовано при термической обработке сварных соединений, полученных линейной сваркой трением, в частности сварных соединений диска и лопаток, например дисков ротора в моноблоке с лопатками - блисков. Нагрев участка перехода от шва к основному металлу осуществляют...
Тип: Изобретение
Номер охранного документа: 0002524037
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e751

Заготовка для изготовления полой лопатки турбомашины способом сверхпластической формовки

Изобретение относится к машиностроению, а именно к области изготовления полых лопаток авиационных двигателей способом сверхпластической формовки, и может быть использовано при изготовлении, например, полой вентиляторной лопатки турбомашины. Заготовка содержит формуемую и неформуемую части. По...
Тип: Изобретение
Номер охранного документа: 0002525010
Дата охранного документа: 10.08.2014
Показаны записи 11-20 из 146.
27.10.2013
№216.012.7a10

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к области машиностроения и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора и турбины из легированных сталей и сплавов на никелевой основе для повышения выносливости и...
Тип: Изобретение
Номер охранного документа: 0002496910
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a11

Способ получения теплозащитного покрытия на детали газовой турбины из никелевого или кобальтового сплава

Изобретение относится к области машиностроения, а именно к способам получения теплозащитных покрытий на деталях турбин из никелевых или кобальтовых сплавов, в частности газовых турбин авиадвигателей и энергетических установок. Способ включает нанесение жаростойкого подслоя и формирование...
Тип: Изобретение
Номер охранного документа: 0002496911
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a13

Установка для ионно-лучевой и плазменной обработки

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий. Цилиндрическая вакуумная камера (1) установки...
Тип: Изобретение
Номер охранного документа: 0002496913
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a5d

Способ изготовления моноблочного лопаточного диска

Изобретение может быть использовано при изготовлении моноблочного лопаточного диска (блиска), преимущественно, для ротора газотурбинного двигателя. Получают лопатку с выступом, параметры которого обеспечивают присоединение к диску посредством линейной сварки трением. На лопатке выполняют...
Тип: Изобретение
Номер охранного документа: 0002496987
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a5f

Способ линейной сварки трением лопаток с диском для получения блиска

Изобретение относится к авиационной промышленности, в частности к способу изготовления моноблочного лопаточного диска преимущественно для использования в роторе газотурбинного двигателя. При изготовлении лопаточного диска, имеющего множество лопаток, присоединенных к диску радиально, формируют...
Тип: Изобретение
Номер охранного документа: 0002496989
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.81b3

Составной сегмент прирабатываемого уплотнения турбины

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Составной сегмент прирабатываемого уплотнения турбины содержит уплотняющий блок, выполненный в виде призмы из...
Тип: Изобретение
Номер охранного документа: 0002498879
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82bb

Надбандажное прирабатываемое уплотнение для паровой турбины

Надбандажное прирабатываемое уплотнение для паровой турбины содержит уплотнительные кольцевые гребешки ротора турбины, сегменты уплотнения и кольцевые пазы статора турбины. Сегменты уплотнения включают в себя уплотняющие блоки, прикрепленные к корпусам уплотняющих блоков, имеющим в поперечном...
Тип: Изобретение
Номер охранного документа: 0002499143
Дата охранного документа: 20.11.2013
20.03.2014
№216.012.ac95

Надбандажное лабиринтное уплотнение для паровой турбины

Лабиринтное надбандажное уплотнение для паровой турбины содержит уплотнительный кольцевой гребешок и уплотняющие блоки. Гребешок выполнен или установлен на бандаже лопаток ступени ротора турбины. Уплотняющие блоки установлены с уплотняющим радиальным зазором относительно кольцевого гребешка...
Тип: Изобретение
Номер охранного документа: 0002509896
Дата охранного документа: 20.03.2014
27.07.2014
№216.012.e387

Способ аргонодуговой обработки сварных соединений, полученных линейной сваркой трением

Изобретение может быть использовано при термической обработке сварных соединений, полученных линейной сваркой трением, в частности сварных соединений диска и лопаток, например дисков ротора в моноблоке с лопатками - блисков. Нагрев участка перехода от шва к основному металлу осуществляют...
Тип: Изобретение
Номер охранного документа: 0002524037
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.eea2

Способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом

Изобретение относится к порошковой металлургии, в частности к изготовлению металлических изделий из порошков селективным лазерным спеканием. Наносят слой керамического порошка, проводят селективное спекание на заданных участках слоя и удаляют указанный материал из неспеченных участков. Между...
Тип: Изобретение
Номер охранного документа: 0002526909
Дата охранного документа: 27.08.2014
+ добавить свой РИД