×
14.06.2019
219.017.832b

Результат интеллектуальной деятельности: Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок

Вид РИД

Изобретение

№ охранного документа
0002691414
Дата охранного документа
13.06.2019
Аннотация: Изобретение относится к уплотнительной технике. Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок заключается в определении допустимого радиального люфта вала, равного 0,15÷0,30 мм. При этом измерение радиального люфта вала проводится при полностью выбранных зазорах между деталями, расположенными между валом и корпусом турбонасосного агрегата. Для этого к диску турбины в плоскости диска прикладывается поочередно в две противоположные стороны одинаковое усилие в диапазоне 50÷70 кгс. Техническим результатом изобретения является обеспечение герметичности турбонасосного агрегата и топливной системы двигателя летательного аппарата до и после запуска двигателя в условиях воздействия высоких вибрационных нагрузок. 5 ил.

Изобретение относится к области машиностроения, а именно к уплотнительной технике, и может быть использовано при создании турбонасосных агрегатов летательных аппаратов (ЛА), эксплуатируемых в условиях высоких вибрационных нагрузок.

Известен способ уплотнения вращающихся валов резиновыми манжетами [1. Башта, Т.М. Гидравлические приводы летательных аппаратов. -М.: Машиностроение, 1967. - С. 443, 444, 447, 448, рис. 373а, б, 376.], в котором для обеспечения герметичности при числах оборотов n≥2000 об/мин биение поверхности вала не должно превышать 0,08÷0,10 мм, при n<2000 об/мин биение не должно превышать 0,10÷0,15 мм. При больших значениях биения между манжетами и валом образуется зазор, определяемый эксцентриситетом и угловой скоростью вала.

Известен способ герметизации турбонасосного агрегата по валу двумя манжетными уплотнениями для повышения надежности [2. Конструкция и проектирование жидкостных ракетных двигателей: Учебник для авиац. вузов / Под ред. Г.Г. Гахуна. - М.: Машиностроение, 1989. - С. 230-232, рис. 10.29.], в котором герметичность обеспечивается при биении поверхности вала, не превышающем 0,08 мм. При несоосности и биении вала, превышающем данное значение, герметичность уплотнения нарушается.

Недостатком в данных способах уплотнения вала [1., 2.] является использование в качестве критерия герметичности параметра биения вала, который относится только к вращающимся валам и не характеризует герметичность неподвижного вала - характерное состояние турбонасосного агрегата до запуска двигателя, когда топливная система законсервирована. Кроме того, биение вала характеризует герметичность не в полной мере. Герметичность определяется не только биением вала, а полным перемещением вала в радиальном направлении при воздействии вибраций, равным сумме биения вала и всех зазоров между деталями, при которых ротор устанавливается в корпусе агрегата.

Прототипом к заявляемому способу по совокупности технических признаков выбран способ уплотнения валов манжетными уплотнениями, установленными с натягом, утечки через которые в состоянии покоя отсутствуют как при наличии давления, так и без давления, а могут иметь место лишь при работе, увеличиваясь по мере износа уплотняющих деталей [3. Макаров Г.В. Уплотнительные устройства. - Л.: Машиностроение, 1973. -С. 95].

В способе, выбранном в качестве прототипа, не учитываются воздействия вибраций на уплотняемый вал, находящийся как в подвижном, так и неподвижном состоянии. В этом случае при воздействии вибраций герметичность манжетных уплотнений вращающегося вала нарушится. Воздействие вибраций также приведет к разгерметизации манжетных уплотнений в состоянии покоя вала, как при наличии давления, так и без давления жидкости, действующего на манжетные уплотнения.

Задачей, на решение которой направлено заявляемое изобретение, является обеспечение надежной герметичности турбонасосного агрегата и топливной системы двигателя ЛА в условиях воздействия высоких вибрационных нагрузок при неподвижном и вращающемся вале ротора, наличии и отсутствии давления топлива в агрегате.

В предлагаемом способе обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок, осуществляемом обжатием вала манжетными уплотнениями, установленными с натягом, работающем как при наличии давления, так и без давления жидкости, при неподвижном и вращающемся уплотняемом вале, с целью обеспечения надежной герметичности турбонасосного агрегата и топливной системы двигателя в условиях воздействия высоких вибрационных нагрузок, определен допустимый радиальный люфт вала, равный 0,15÷0,30 мм.

Измерение радиального люфта вала проводится при полностью выбранных зазорах между деталями, расположенными между валом и корпусом турбонасосного агрегата, что достигается приложением к диску турбины в плоскости диска поочередно в две противоположные стороны одинакового усилия в диапазоне 50÷70 кгс.

Заявляемое изобретение совпадает с известным способом уплотнения вращающихся валов по следующей совокупности существенных признаков: способ осуществляется обжатием вала манжетными уплотнениями, установленными с натягом, как при наличии давления, так и без давления, действующего на манжетные уплотнения. Главными отличиями предлагаемого изобретения от прототипа являются введение допустимого диапазона радиального люфта вала турбонасосного агрегата, величины и направления усилия, прикладываемого к диску турбины, при измерении радиального люфта вала.

Сущность изобретения поясняется графическими изображениями. На фиг. 1 показано место уплотнения вала и опора ротора турбонасосного агрегата; на фиг. 2, 3 - механизм возникновения негерметичности турбонасосного агрегата при воздействии вибраций; на фиг. 4 - график зависимости утечки топлива из турбонасосного агрегата от радиального люфта вала при воздействии вибраций; на фиг. 5 - пример приспособления для измерения радиального люфта вала (в данной заявке устройство не рассматривается).

Способ осуществляется следующим образом. Собирают турбонасосный агрегат (фиг. 1) с манжетными уплотнениями 1, устанавливаемыми с натягом на вал 2 ротора турбины 3. Измеряют радиальный люфт δ вала 2, складывающийся из зазоров между валом 2, втулкой 4, подшипником 5, стаканом 6, кольцом упругим 7, корпусом турбонасосного агрегата 8, радиального люфта подшипника 5 и полного радиального хода кольца упругого 7, контролируя выполнение условия обеспечения допустимого радиального люфта вала 0,15÷0,30 мм.

Данный диапазон получен по результатам экспериментальных исследований [4. Акт №11/18 от 09.07.2018 г. по исследованию причин негерметичности турбонасосных агрегатов двигателя ЛА по манжетным уплотнениям, установленным с натягом, при воздействии вибрационных нагрузок. - [Оренбург]: АО «ПО «Стрела», 2018. - 2 с]. Для исследования влияния радиального люфта вала на течь топлива из турбонасосных агрегатов и топливной системы был создан стенд проверки герметичности агрегатов при воздействии вибраций. Имитация консервации топливной системы двигателя выполнялась при помощи насоса, создающего давление топлива внутри агрегата. Агрегат устанавливался на вибростенд, и проводились его испытания в условиях высоких вибрационных нагрузок без давления и с давлением топлива в агрегате (схемы стендовых испытаний в данной заявке не рассматриваются). Исследования показали, что радиальный люфт вала ротора, вызванный вибрациями, приводит к разгерметизации агрегата не только при вращении вала, но и при неподвижном вале ротора - характерный случай для законсервированной топливной системы двигателя ЛА - как без давления, так и с давлением топлива в агрегате. При этом течь топлива увеличивалась с уменьшением давления в агрегате, что объясняется ослаблением обжатия манжетами вала. Было установлено, что причиной разгерметизации агрегатов при высоких вибрационных нагрузках является воздействие вала на контактные кромки манжет. На фиг. 2, 3 показан механизм возникновения негерметичности турбонасосного агрегата при воздействии вибраций. Частота и амплитуда колебаний вала 2 при воздействии вибраций становятся такими, что эластичность манжет 1 и усилие, создаваемое установленными внутри браслетными пружинами 9, не обеспечивают непрерывный контакт кромок манжет с валом. Контактные кромки манжет не успевают за перемещениями вала, в результате образуется зазор Δ между кромками манжет и валом - появляется течь.

Инерционное воздействие не вращающегося вала ротора на контактные кромки манжет возможно только при наличии радиального люфта вала δ, представляющего суммарное радиальное перемещение вала из свободного состояния до упора в две противоположные стороны:

(1)

Радиальный люфт вала складывается из сумм зазоров между всеми деталями, расположенными между валом и корпусом агрегата, радиального люфта подшипника и полного радиального хода кольца упругого.

На фиг. 4 приведен построенный по экспериментальным данным график зависимости утечки топлива из турбонасосного агрегата от радиального люфта вала 8 при воздействии вибраций. Исследованы агрегаты с радиальным люфтом вала δ от 0,14 до 0,76 мм. Установлено, что герметичность агрегатов обеспечивается при радиальном люфте вала δ≤0,35 мм, при δ>0,35 мм появляется течь, усиливающаяся прямо пропорционально увеличению радиального люфта вала. Зная величину радиального люфта вала δ=0,35 мм, при превышении которой появляется течь, установлен коэффициент запаса по люфту ротора Δδ=15% и определена верхняя граница допустимого радиального люфта ротора, равная δ=0,3 мм. Нижняя граница радиального люфта ротора определена, исходя из требований прочности и собираемости конструкции турбонасосного агрегата, и равна δ=0,15 мм. Ниже данной границы δ<0,15 мм сборка агрегата не допустима, так как не будет реализована отстройка ротора турбины 3 кольцом упругим 7 от резонансных колебаний, вызывающих разрушение конструкции. Также не будет обеспечена компенсация несоосности опор ротора турбины 3 при сборке, в результате агрегат будет собран с монтажными напряжениями, что приведет к снижению коэффициентов запаса прочности и разрушению турбонасосного агрегата при эксплуатации. Таким образом, для одновременного удовлетворения условий обеспечения герметичности и прочности конструкции радиальный люфт вала турбонасосных агрегатов должен находиться в диапазоне 0,15÷0,30 мм.

При выполнении измерений радиального люфта вала турбонасосного агрегата усилие прикладывается к диску турбины в плоскости диска для обеспечения точности и повторяемости результатов измерений. Величина прикладываемого усилия должна находиться в диапазоне 50÷70 кгс и быть постоянной при проверках разных агрегатов одинаковой конструкции. Данный диапазон определен экспериментально, приложением к диску турбины в плоскости диска в одну, а затем другую сторону плавно нарастающего усилия до остановки стрелки индикатора, свидетельствующей о полном выборе зазоров между деталями агрегата, в том числе радиального люфта подшипника и полного радиального хода кольца упругого. В момент остановки стрелки индикатора проводилась фиксация величины прикладываемого усилия. Полный выбор зазоров является главным условием для измерения истинного значения радиального люфта вала. Для точного определения усилий, при которых зазоры будут полностью выбраны, измерения выполнены на нескольких турбонасосных агрегатах разной конструкции.

Измерение радиального люфта вала турбонасосных агрегатов проводится на приспособлении (Пример приспособления - на фиг. 5, в данной заявке устройство не рассматривается), которое представляет собой сварную раму 10 с круглым вырезом для доступа к диску турбины 11. К раме агрегат крепится неподвижно винтами. Для измерения радиального люфта вала к диску турбины в плоскости диска прикладывается усилие за счет вращения винта 12. Усилие передается к диску турбины 11 через динамометр 13 и хомут 14. С использованием динамометра 13 выставляется величина усилия 50÷70 кгс, прикладываемая к диску турбины в одну, а затем в другую сторону. Показания от динамометра 13 выводятся на электронное табло 15. Перемещения вала ротора в одну и другую сторону измеряются по индикатору 16, мерительная ножка 17 которого упирается непосредственно в обод диска турбины 11 через отверстие в хомуте 14. Радиальный люфт вала определяется суммированием данных перемещений.

В случае необеспечения радиального люфта вала 0,15÷0,30 мм турбонасосный агрегат разбирается, и проверяются размеры деталей, влияющие на радиальный люфт вала. Выявленная деталь с отклонением геометрии заменяется, агрегат собирается и проводится повторная проверка радиального люфта вала. При положительных результатах проверки агрегат собирается окончательно.

Таким образом, техническим результатом изобретения является обеспечение герметичности турбонасосного агрегата и топливной системы двигателя ЛА до и после запуска двигателя в условиях воздействия высоких вибрационных нагрузок.

Технический результат достигается тем, что:

- допустимый радиальный люфт вала турбонасосного агрегата равен 0,15÷0,30 мм;

- измерение радиального люфта вала проводится при полностью выбранных зазорах между деталями, расположенными между валом и корпусом турбонасосного агрегата, что достигается приложением к диску турбины в плоскости диска поочередно в две противоположные стороны одинакового усилия в диапазоне 50÷70 кгс.

Применение данного способа решает проблему обеспечения герметичности турбонасосного агрегата и топливной системы двигателя при совместном полете ЛА с самолетом-носителем и повышает надежность ЛА в условиях высоких вибрационных нагрузок.

Предлагаемый способ может быть выполнен с помощью стандартного оборудования и материалов отечественного производства. Таким образом, заявленный способ соответствует критерию «промышленная применимость».

Источники, принятые во внимание:

1. Башта, Т.М. Гидравлические приводы летательных аппаратов. -М.: Машиностроение, 1967. - 495 с.

2. Конструкция и проектирование жидкостных ракетных двигателей: Учебное издание / Под ред. Г.Г. Гахуна. - М.: Машиностроение, 1989. -424 с.

3. Макаров, Г.В. Уплотнительные устройства. - Л.: Машиностроение, 1973.-232 с.

4. Акт №11/18 от 09.07.2018 г. по исследованию причин негерметичности турбонасосных агрегатов двигателя ЛА по манжетным уплотнениям, установленным с натягом, при воздействии больших вибрационных нагрузок. - [Оренбург]: АО «ПО «Стрела», 2018. - 2 с.

Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок, осуществляемый обжатием вала манжетными уплотнениями, установленными с натягом, работающий как при наличии давления, так и без давления жидкости, при неподвижном и вращающемся уплотняемом вале, отличающийся тем, что допустимый радиальный люфт вала равен 0,15÷0,30 мм, а его измерение проводится при полностью выбранных зазорах между деталями, расположенными между валом и корпусом турбонасосного агрегата, что достигается приложением к диску турбины в плоскости диска поочередно в две противоположные стороны одинакового усилия в диапазоне 50÷70 кгс.
Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок
Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок
Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок
Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок
Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок
Способ обеспечения герметичности турбонасосного агрегата в условиях высоких вибрационных нагрузок
Источник поступления информации: Роспатент

Показаны записи 21-30 из 161.
25.08.2017
№217.015.a302

Способ стабилизации движения ракеты при подводном старте и устройство для его осуществления

Изобретение относится к области ракетной техники, в частности к способам и устройствам стабилизации ракеты при подводном старте с движущегося носителя. Стабилизация движения ракеты при подводном старте сводится к обеспечению работы механизмов устройства стабилизации и последовательным командам...
Тип: Изобретение
Номер охранного документа: 0002607126
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae28

Способ теплового нагружения неметаллических конструкций

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях. Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002612887
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b070

Регулируемое сопло

Изобретение относится к ракетной технике и описывает устройство регулируемого сопла с регулирующим приводом и механизмом синхронизации. Регулируемое сверхзвуковое сопло содержит корпус, шарнирно закрепленные на нем дозвуковые и сверхзвуковые створки, образующие канал для истечения продуктов...
Тип: Изобретение
Номер охранного документа: 0002613358
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b124

Способ изготовления деталей из титановых сплавов

Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической формовки ответственных силовых деталей. Изобретение позволяет улучшить прочностные характеристики деталей из титанового сплава ВТ8. Изготавливают силовые элементы из...
Тип: Изобретение
Номер охранного документа: 0002613003
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b138

Контрольный ротор для проверки балансировочного станка

Изобретение относится к области машиностроения и предназначено для проверки балансировочных станков и подтверждения их характеристик. Контрольный ротор состоит из вала и диска, на валу установлены радиально-упорные подшипники, зафиксированные от осевого перемещения разрезными стопорными...
Тип: Изобретение
Номер охранного документа: 0002613017
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b13f

Универсальный модуль фиксации ракет в пусковой установке

Изобретение относится к военной технике, в частности к устройствам удержания боеприпасов (ракет), и представляет собой универсальный модуль фиксации ракет в пусковой установке (УМФР). УМФР в пусковой установке (ПУ) состоит из металлического корпуса, выполненного из двух идентичных половин,...
Тип: Изобретение
Номер охранного документа: 0002613205
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b1e7

Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева

Изобретение относится к тепловой защите главным образом сверх- и гиперзвуковых летательных аппаратов (ЛА). Передняя кромка ЛА выполнена в виде оболочки со сферическим затуплением, воспринимающим пиковые тепловые нагрузки, и боковыми поверхностями, воспринимающими пониженные тепловые нагрузки....
Тип: Изобретение
Номер охранного документа: 0002613190
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b208

Способ ориентации орбитального космического аппарата с программно-управляемыми батареями солнечными

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно...
Тип: Изобретение
Номер охранного документа: 0002613097
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b7a8

Способ изготовления деталей из титановых сплавов

Изобретение может быть использовано для изготовления методом сверхпластической деформации ответственных силовых деталей из титанового сплава ВТ6, в частности шпангоутов, люков, обтекателей. Предварительно проводят электролитическую модификацию сплава никелем. Нагревают сплав до температуры...
Тип: Изобретение
Номер охранного документа: 0002614919
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7fa

Шаровая опора

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух крышек, независимо соединенных между...
Тип: Изобретение
Номер охранного документа: 0002615024
Дата охранного документа: 03.04.2017
Показаны записи 21-21 из 21.
11.04.2020
№220.018.1415

Способ контроля осевых зазоров между центробежным колесом и корпусом турбонасосного агрегата и устройство для его осуществления

Группа изобретений относится к области машиностроения, а именно к машинам с вращающимся ротором, и может быть использована при создании турбонасосных агрегатов (ТНА) летательных аппаратов. В способе контроля осевых зазоров между центробежным колесом и корпусом ТНА осуществляется приложение к...
Тип: Изобретение
Номер охранного документа: 0002718612
Дата охранного документа: 08.04.2020
+ добавить свой РИД