×
13.06.2019
219.017.8273

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СМЕШАННОГО ФТОРИСТОГО СОРБЕНТА ДЛЯ ОЧИСТКИ ГЕКСАФТОРИДА ВОЛЬФРАМА, УРАНА, МОЛИБДЕНА И РЕНИЯ ОТ ФТОРИСТОГО ВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения карбоната лития или бария с гелеобразным гидроксидом кальция, сушки, проводимой последовательно при температуре 20-30°С и 60-90°С, прокаливания при температуре 100-120°С и двухстадийного гидрофторирования безводным фтористым водородом при температуре 300-350°С в двух последовательно соединенных сорбционных аппаратах. Полученный сорбент обладает высокими показатели по прочности, пористости и емкости по фтористому водороду. 2 з.п. ф-лы, 1 табл.

Изобретение относится к технологиям переработки отходов, образующихся при использовании высших фторидов металлов (WF6, UF6, МоF6, RеF6) и содержащих фтористый водород, и, в частности, к технологии синтеза фтористых сорбентов, которые могут быть применены для очистки гексафторидов вольфрама, урана, молибдена, рения методом избирательной сорбции фтористого водорода.

Для очистки гексафторидов вольфрама и урана обычно используют фториды лития и бария, которые химически инертны к гексафторидам металлов при температурах 25-150°С [Н.П.Галкин, В.А.Зайцев, М.Б.Серегин. Улавливание и переработка фторсодержащих газов, М., Атомиздат, 1975].

Предложен порошкообразный сорбент для извлечения фтористого водорода из газов на основе фторидов щелочных металлов (литий, натрий) с добавкой порошка фторида бария в количестве 5,6-35,5% [патент SU №1549581, МПК B01D 53/02, B01J 20/02, опубл. 15.03.1990 г.].

Известен способ очистки гексафторида вольфрама от фтористого водорода на фториде бария и/или лития при температуре 20-40°С [патент РФ №2303570, C01G 41/04, опубл. 10.07.2004 г.].

Недостатком порошкообразных сорбентов является наличие пылящих операций, громоздкость горизонтальных реакторов, в которых размещается сорбент, и большое гидравлическое сопротивление слоя порошка. По указанной причине в последние годы стремятся для очистки гексафторидов вольфрама и урана использовать гранулированные сорбенты, которые должны удовлетворять следующим условиям:

- простота технологии приготовления сорбента в сочетании с соблюдением требований экологической безопасности;

- достаточная механическая прочность и высокая пористость сорбента;

- устойчивость в многократных циклах сорбции-десорбции фтористого водорода.

Известен способ получения гранулированного сорбента на основе фторида лития, согласно которому при подготовке шихты во фторид лития добавляют фториды кальция или магния, или аммония, шихту увлажняют до 5-7% содержания воды и формуют в гранулы, которые спекают при температуре 250-500°С и обрабатывают фтористоводородной кислотой [Патент РФ №2211726, МПК B01J 20/02, B01D 53/68, опубл. 10.09.2003 г.]. Добавку CaF2 и MgF2 в количестве 10-25% вводят в качестве укрепляющих добавок для увеличения прочности гранул. Фторид аммония вводят для увеличения в сорбенте объема пор, образующихся при термическом разложении фторида аммония.

Он имеет следующие недостатки:

- фтористый водород, выделяющийся при разложении фторида аммония, вызывает коррозию материалов вентиляционных труб. Кроме того, в них десублимируется фторид аммония, вызывая их забивку. Наряду с этим, фторид аммония, являясь гигроскопичным веществом, присоединяет влагу и образует влажные, трудноудаляемые из вентпроводов осадки;

- дополнительная обработка спеченного сорбента фтористоводородной кислотой приводит к усложнению технологии и необходимости проведения дополнительного прокаливания сорбента для удаления фтористоводородной кислоты. Выделение фтористоводородной кислоты при прокаливании вызывает необходимость, во избежание загрязнения окружающей среды, проводить процесс обезвреживания сбросных технологических газов в специальной системе газоочистки, что удорожает процесс и приводит к образованию фторсодержащих отходов.

Описан также способ приготовления сорбента на основе фторида лития [Патент РФ №2339444, B01J 20/20, B01D 53/68, опубл. 20.07.2008 г.], согласно которому для устранения недостатка способа по Патенту №2211726, в шихту, содержащую фториды щелочных и/или щелочноземельных металлов, в качестве порообразователя вместо фторида аммония добавляют карбонат аммония в количестве 15-20%, а затем увлажненную шихту формуют, сушат при 60-150°С и спекают при температуре 350-550°С. Способ имеет следующие недостатки:

- введение в шихту значительного количества карбоната аммония приводит в процессе сушки при температуре 60-150°С к выделению большого количества газообразного аммиака, который является токсичным веществом. Предельно допустимая концентрация аммиака в воздухе производственных помещений составляет 20 мг/м3;

- замена фторида аммония карбонатом аммония привела к существенному уменьшению прочности гранул, которая составляет 11-16 кг/см2. Указанная прочность недостаточна для проведения реального процесса в вертикальных сорбционных колоннах, поскольку при поглощении фтористого водорода слоем сорбента гранулы увеличиваются в объеме примерно на 10-12% и начинают раздавливать друг друга, что приводит к их разрушению через 2-3 цикла сорбции-десорбции фтористого водорода.

В связи с этим, в качестве прототипа принимается способ по Патенту РФ №2211726, который по основному признаку - введению укрепляющих добавок в виде фторидов кальция и/или магния в количестве 10-25% - более близок к заявляемому методу.

Технический результат предлагаемого изобретения заключается в получении гранулированного фтористого сорбента смешанного состава с оптимальным содержанием укрепляющих добавок, обеспечивающим высокие показатели по прочности, пористости и емкости по фтористому водороду для эффективной очистки гексафторидов вольфрама, урана, молибдена и рения от этой примеси.

Технический результат достигается получением сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода в виде гранул, содержащих фторид лития или фторид бария и фторид кальция, путем смешения карбоната лития или бария с гелеобразным гидроксидом кальция, сушки, проводимой последовательно при температурах 20-30°С и 60-90°С, прокаливания при температуре 120°С и двухстадийного гидрофторирования безводным фтористым водородом при температуре 300-350°С в двух последовательно соединенных сорбционных аппаратах. При этом в первом аппарате гидрофторирование ведут до получения сорбента, содержащего 60-70% мас. LiF или BaF2 и 30-40% мас. CaF2, во втором аппарате гидрофторирование ведут избыточным фтористым водородом из первого аппарата с получением полупродукта, содержащего смесь карбонатов, гидроксидов и фторидов соответствующих металлов. Приготовление гелеобразного гидроксида кальция осуществляют путем смешения оксида кальция с водой при температуре 30-50°С в течение 2-х часов. Полупродукт, полученный во втором аппарате, подвергают дополнительному гидрофторированию до получения сорбента, при этом второй аппарат, содержащий полупродукт устанавливают на первой стадии гидрофторирования.

Пример 1. Приготовление 100 г сорбента, содержащего 60% мас. LiF + 40% мас. CaF2. Приготовление сорбента осуществляется из смеси 85,4 г карбоната лития с 37,9 г (из расчета на сухой Са(ОН)2) гелеобразного гидроксида кальция, полученным путем взаимодействия 28,7 г оксида кальция с 50 мл воды при 50°С в течение 2-х часов, с получением гранул, которые сушили 72 часа при температуре 25°С, а затем 6 часов при 80°С, после чего прокаливали 4 часа при температуре 120°С. Полученные гранулы гидрофторировали при 350°С в колонном аппарате. Избыточный фтористый водород улавливали на свежей порции гранул того же состава, полученных из смеси карбоната лития с гелеобразным гидроксидом кальция во втором колонном аппарате, установленном последовательно. После окончания гидрофторирования во вторую колонну подавали фтористый водород, а для улавливания избыточного фтористого водорода использовали первую колонну, загруженную свежими гранулами Li2СО3 (или ВаСО3)+Са(ОН)2. Сорбент имеет следующие структурно-механические характеристики: прочность - 45,0 кгс/см2, пористость - 54,3%. Определена емкость сорбента по фтористому водороду: теоретическая емкость составляет 0,650 г HF/г сорбента, практическая емкость при парциальном давлении HF 200 мм рт. ст. и температуре 25°С при 6 часовом насыщении сорбента в статических условиях составляет 0,550 г HF/г сорбента. Определена емкость сорбента по гексафториду вольфрама при температуре 25°С и парциальном давлении WF6 100 мм рт. ст., составляющая 0,008 г WF6/г сорбента.

Другие примеры получения сорбентов различного состава, содержащих фторид лития или фторид бария и фторид кальция в качестве укрепляющей добавки, их структурно-механические свойства и сорбционная емкость по фтористому водороду приведены в таблице.

Таблица
Структурно-механические характеристики фтористых сорбентов на основе фторида лития
Состав сорбента, мас.% Прочность, кг/см2 Пористость, % Равновесная емкость сорбента при давлении, г HF/г сорбента
200 мм рт. ст. 600 мм рт. ст.
80%LiF+20%CaF2 8,0 64,0 0,624 0,705
70%LiF+30%CaF2 40,5 56,2 0,616 0,695
60%LiF+40%CaF2 45,0 54,3 0,550 0,650
50%LiF+50%CaF2 50,5 49,1 0,494 0,612
80%BaF2+20%CaF2 12,0 43,1 0,12 0,19
70%BaF2+30%CaF2 42,0 41,0 0,10 0,16
60%BaF2+40%CaF2 48,0 39,0 0,09 0,16
50%BaF2+50%CaF2 53,0 37,0 0,08 0,15

Из экспериментальных данных видно, что для поглощения HF могут быть использованы все испытанные составы сорбентов, однако лучшими показателями характеризуются сорбенты, отвечающие составу 50-60% мас. LiF (или BaF2)+30-40% мас. CaF2. При более низком содержании CaF2 (20% мас.) прочность гранул недостаточна (8,0 кг/см2), а при более высоком содержании CaF2 (>40% мас.) сорбент характеризуется более низкими показателями по пористости и емкости.

Аналогичная картина наблюдается при использовании смешанного сорбента на основе фторида бария. Лучшими показателями характеризуется сорбент состава 60-70% мас. BaF2+30-40% мас. CaF2.

Испытания показали, что сорбенты состава 60-70% мас. LiF+30-40% мас. CaF2 и 60-70% мас. BaF2+30-40% мас. CaF2 устойчивы в 10 циклах сорбции-десорбции, однако по мере циклического использования прочность гранул уменьшается, а пористость и скорость насыщения фтористым водородом возрастают. Так, прочность гранул состава 70% мас. LiF+30% мас. CaF2 после 1, 3, 6 и 10 циклов уменьшилась соответственно до 23,9, 7,5, 6,0 и 5,2 кг/см2, а пористость возросла до 53,8, 61,3, 62,0 и 65,0%.

Из таблицы следует, что емкость сорбента на основе фторида лития значительно превышает аналогичный показатель у сорбента на основе фторида бария. Однако последний обладает способностью более глубоко извлекать HF из газов благодаря большей термической устойчивости гидрофторида бария.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 54.
10.04.2019
№219.017.07c1

Способ приготовления гранулированного смешанного фтористого сорбента на основе фторида натрия

Изобретение относится к синтезу гранулированных химических поглотителей. Способ приготовления гранулированного смешанного сорбента на основе фторида натрия включает гидрофторирование при 300-350°С прокаленных гранул, сформованных из пасты, содержащей (мас. %): карбонат натрия - 92-80,...
Тип: Изобретение
Номер охранного документа: 0002408420
Дата охранного документа: 10.01.2011
19.04.2019
№219.017.3114

Способ получения порошков редких металлов

Изобретение относится к области порошковой металлургии редких металлов (цирконий, гафний, ниобий, тантал), используемых в производстве жаропрочных коррозионно- и радиационно стойких сплавов для атомной, авиационной, химической промышленности, высокодисперсных и электролитических порошков для...
Тип: Изобретение
Номер охранного документа: 0002416493
Дата охранного документа: 20.04.2011
29.04.2019
№219.017.40d3

Способ извлечения урана из рудного сырья

Изобретение относится к способу извлечения урана из рудного сырья. Способ включает дробление, мокрое измельчение исходного сырья с получением пульпы. Причем в качестве исходного сырья используют руду, содержащую браннерит. После мокрого измельчения проводят сгущение пульпы, сернокислотное...
Тип: Изобретение
Номер охранного документа: 0002393255
Дата охранного документа: 27.06.2010
29.04.2019
№219.017.40e6

Способ получения тетрафторида кремния

Изобретение может быть использовано в электронной промышленности при производстве солнечных батарей. Кремнефторид натрия предварительно сушат при температуре до 300°С и остаточном давлении до 2 мм рт.ст. На первой стадии терморазложения кремнефторид натрия нагревают до 620-650°С с постоянным...
Тип: Изобретение
Номер охранного документа: 0002399583
Дата охранного документа: 20.09.2010
29.04.2019
№219.017.42da

Способ извлечения урана из трудновскрываемых руд

Изобретение относится к извлечению ценных компонентов из первичных и смешанных руд и может быть использовано для способа извлечения урана и сопутствующих металлов из трудновскрываемых руд. Способ включает окислительный обжиг при температуре 500-700°С и сернокислотное выщелачивании урана. Обжигу...
Тип: Изобретение
Номер охранного документа: 0002368681
Дата охранного документа: 27.09.2009
29.05.2019
№219.017.664a

Способ переработки урановой руды

Изобретение относится к способу переработки урановой руды. Способ включает гранулирование урановой руды, ее сульфатизацию серной кислотой в присутствии азотной кислоты. При этом азотную кислоту подают в количестве, необходимом для окисления сульфидов, содержащихся в урановой руде. Затем...
Тип: Изобретение
Номер охранного документа: 0002385963
Дата охранного документа: 10.04.2010
29.05.2019
№219.017.664c

Пиридиниевый ионит для сорбции урана из растворов и пульп

Настоящее изобретение относится к сорбционной гидрометаллургии урана. Описан пиридиниевый ионит на основе сополимера стирола и дивинилбензола для сорбции урана из растворов и пульп, отличающийся тем, что в состав исходной полимерной матрицы ионита дополнительно вводят метакриловую кислоту в...
Тип: Изобретение
Номер охранного документа: 0002385885
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7c0d

Способ сорбционного извлечения урана из сернокислотных растворов и пульп

Изобретение относится к гидрометаллургии и может быть использовано в сорбционной технологии извлечения урана из растворов и пульп, полученных в результате сернокислотного выщелачивания. Способ включает сорбционное извлечение урана из сернокислотных растворов и пульп контактированием со...
Тип: Изобретение
Номер охранного документа: 0002364642
Дата охранного документа: 20.08.2009
09.06.2019
№219.017.7c1d

Способ покусковой сепарации минерального сырья

Изобретение относится к области обогащения полезных ископаемых и, в частности его можно использовать в методах покусковой сепарации как радиоактивных, так и не радиоактивных руд. Способ покусковой сепарации минерального сырья по содержанию компонента включает покусковую подачу рудных кусков в...
Тип: Изобретение
Номер охранного документа: 0002366512
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7cf6

Способ переработки упорных руд и концентратов

Изобретение относится к способу переработки упорных руд и концентратов, содержащих золото. Способ включает обработку их хлором в присутствии воды и комплексообразователя в виде хлорида натрия с переводом золота в раствор, отделение раствора от образовавшегося осадка, промывку осадка водой с...
Тип: Изобретение
Номер охранного документа: 0002412262
Дата охранного документа: 20.02.2011
Показаны записи 41-44 из 44.
29.06.2019
№219.017.9f6c

Сорбент на основе уранилфторида и способ его получения

Изобретение относится к технологии получения сорбентов для очистки гексафторида урана, получаемого из облученного ядерного топлива (ОЯТ), от гексафторида плутония. Сорбент содержит уранилфторид и добавку, увеличивающую пористость сорбента, выбранную из фторидов кальция, магния, стронция, бария...
Тип: Изобретение
Номер охранного документа: 0002422199
Дата охранного документа: 27.06.2011
06.07.2019
№219.017.a895

Способ получения арсина и устройство для его осуществления

Изобретение относится к области химической технологии и может быть использовано в микроэлектронике, волоконной оптике, солнечной энергетике. Арсин получают электролизом водного раствора оксида мышьяка с рН 2-6 в ячейке, в которой катодное и анодное пространство разделены мембраной из асбестовой...
Тип: Изобретение
Номер охранного документа: 0002369666
Дата охранного документа: 10.10.2009
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
+ добавить свой РИД