×
13.06.2019
219.017.80d9

Результат интеллектуальной деятельности: Способ определения давления насыщения нефти газом

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения давления насыщения нефти газом Р во внутрискважинной зоне. Способ реализуется на скважинах, оборудованных электроцентробежным насосом (ЭЦН) и частотным преобразователем электрического тока погружного электродвигателя. С помощью двух датчиков давления, расположенных на фиксированном расстоянии друг от друга, во внутрискважинной зоне от глубинного насоса до продуктивного нефтяного пласта организуется измерение давления при различных режимах эксплуатации ЭЦН. Датчики давления соединены с линией электропитания с функцией обратной связи со станцией управления скважиной. На первом этапе с помощью частотного преобразователя тока обеспечивается в зоне датчиков давление выше Р, об этом можно судить по стабилизации разницы давлений между двумя датчиками. На втором этапе измерений значительно повышают производительность ЭЦН выше притока жидкости из пласта, в результате давление между датчиками снижается ниже давления насыщения нефти газом, из нефти выделяются первые пузырьки газа, его плотность заметно понижается. Величину давления насыщения нефти газом определяют по графику зависимости разницы давлений между датчиками от среднего значения их показаний при значительном изменении производительности ЭЦН в сторону снижения или, наоборот, повышения. 2 ил.

Предлагаемое изобретение относится к области изучения свойств пластовой нефти и подготовки исходной информации для организации разработки нефтяных месторождений и скважинной добычи нефти. Способ реализуется на скважинах, оборудованных глубинными электроцентробежными насосами и частотными преобразователями тока.

Давление насыщение нефти газом Рнас является важным ориентировочным параметром при выборе режима фильтрации флюидов в призабойной зоне пласта путем поддержания забойного давления на определенном уровне. Параметр также необходимо учитывать при установлении величины давления скважинной продукции на приеме глубинного насоса. Как правило, величину давления насыщения нефти газом определяют в лабораторных условиях при стандартном наборе исследований свойств пластовой нефти, которую отбирают при испытании пласта на продуктивность либо в течение эксплуатации скважины с помощью глубинного пробоотборника. На сегодня в нефтепромысловой практике является актуальной техническая задача по определению параметра Рнас непосредственно в скважинных условиях.

Известно изобретение «Способ определения обводненности продукции нефтедобывающей скважины» по патенту РФ №2610941 (опубл. 17.02.2017, бюл. 5), по которому над продуктивным нефтенасыщенным пластом располагают в скважинной зоне два датчика давления на фиксированном расстоянии друг от друга. По разнице показаний датчиков можно судить о содержании нефти и воды в добываемой пластовой продукции при отсутствии третьей - газовой фазы. Способ реализуем только при давлении в зоне датчиков выше давления насыщения нефти газом, поэтому априори невозможно определить по данному способу величину параметра Рнас.

Известен способ определения искомого параметра Рнас, заключающийся в последовательном снижении давления на приеме насоса с помощью изменения производительности глубинного насоса и снижения динамичского уровня жидкости в межтрубном пространстве скважины по патенту РФ №2521091 «Способ определения давления насыщения нефти газом» (опубл. 27.06.2014). Данное изобретение рассматривается нами по техническому содержанию как наиболее близкое к заявляемому, и будет служить прототипом.

Рассматриваемый способ реализуем в промысловых условиях, но требуется информация по динамическому уровню нефти и устьевому давлению в межтрубном пространстве (МП) скважины. Для этого необходимы операторы по обслуживанию скважин с переносными уровнемерами либо стационарные уровнемеры на устье скважин для периодического измерения глубины уровня нефти (жидкости) в МП.

По изобретению №2521091 оценивается состояние жидкости в межтрубном пространстве от приема насоса до динамического уровня. При снижении давления в зоне насоса ниже давления насыщения нефти газом происходит значительное снижение плотности нефти в МП из-за интенсивной дегазации нефти в зоне насоса. Но дегазация нефти в МП на большом расстоянии от насоса происходит постоянно, и это может внести определенную погрешность в графо-аналитическое решение поставленной задачи. Уровень жидкости в межтрубном пространстве определяется с определенной погрешностью звукометрическим методом, поэтому определение давления насыщения нефти газом Рнас, согласно прототипа, будет происходить с определенной систематической погрешностью.

Технической задачей изобретения является создание технологии определения давления насыщения нефти газом без предварительной оценки давления на устье скважины в МП и уровня жидкости. Технология должна быть применима для большинства скважин, в продукции которых преобладает нефть.

Поставленная задача решается по способу определения давления насыщения нефти газом, который заключается в последовательном изменении давления в скважине путем изменения производительности глубинного насоса регулированием частоты тока погружного электродвигателя, с предварительным расположением между глубинным насосом и нефтяным пластом на фиксированном расстоянии друг от друга двух датчиков давления, имеющих кабель электропитания с функцией обратной связи со станцией управления скважины на поверхности земли. На первом этапе способа путем снижения производительности насоса частотным преобразователем тока добиваются такого повышения давления в зоне датчиков, которое обеспечивает постоянную величину разницы давлений между датчиками (это возможно только при давлении выше, чем Рнас). На втором этапе повышают производительность насоса частотным преобразователем тока, и как следствие понижают давление в зоне датчиков до давлений ниже, чем давление насыщения нефти газом. По полученным опытным данным строят график зависимости разницы давлений между датчиками ΔР=P12 от среднего их значения Рср=(Р12)/2, где Р1 - давление в зоне нижнего датчика, Р2 - давление в зоне верхнего датчика. Значение параметра Рср, соответствующее переходу прямолинейной и горизонтальной части графика в криволинейную и ниспадающую часть и является давлением насыщения нефти газом.

На фиг. 1 приведена схема расположения датчиков давления в нефтедобывающей скважине, где 1- обсадная колонна, 2- колонна насосно-компрессорных (лифтовых) труб, 3- погружной электродвигатель (ПЭД), 4-верхний датчик давления. 5- нижний датчик давления, 6- жесткий стержень фиксированной длины, 7- кабель электропитания и обратной связи со станцией управления скважины, 8- станция управления скважины, 9-электроцентробежный насос (ЭЦН).

Длина жесткого стержня 6 будет предопределять точность измерений параметра Рнас. Например при достаточной точности измерений в 1,0 атм необходимо чтобы фиксированное расстояние между датчиками было не более 10 м.

График зависимости ΔР=Р12 от Рср по гипотетической нефтедобывающей скважине приведен на фиг. 2. Рассмотрим состояние пластовых флюидов между датчиками в зависимости от среднего давления между ними.

1. При обеспечении высокого давления в зоне двух датчиков выше 70 атм в нефти попутный газ находится в растворенном состоянии, поэтому между датчиками находится двухфазная жидкость с определенной средней плотностью в пределах 800-1000 кг/м3. Зависимость ΔР от Рср носит характер прямолинейного участка, параллельного горизонтальной оси Рср. И нефть и пластовая вода имеют малую величину коэффициента сжимаемости, поэтому повышение давление в рассматриваемой системе не приводит к чувствительному повышению плотности водо-нефтяной эмульсии, и как следствие, разница давлений между датчиками остается неизменной величиной.

2. На втором этапе измерений повышают частоту тока ПЭД, благодаря этому значительно растет производительность ЭЦН, в результате чего отбирается жидкость из межтрубного пространства, динамический уровень приближается к глубинному насосу и давление между датчиками Рср снижается ниже Рнас. В зоне между датчиками из нефти выделяются пузырьки газа. Значительно снижается плотность трехфазной системы, так как плотность попутного нефтяного газа при давлении 60-70 атм равна 70-100 кг/м3, что в несколько раз меньше, чем плотность нефти и воды (на порядок).

При дальнейшем снижении давления Рср будет расти количество пузырьков газа, а также объем среднестатистического пузырька, поэтому разница давлений между датчиками ΔР будет по параболе приближаться к горизонтальной оси графика на фиг. 2.

Переход прямолинейной части и горизонтальной части зависимости в криволинейную часть и будет соответствовать давлению насыщения нефти газом. По данным зависимости на фиг. 2 величина искомого параметра Рнас равна 70 атм.

Для количественного учета влияния потерь давления на трения при подъеме эмульсионной жидкости от нижнего датчика к верхнему проведены расчеты по формуле Дарси-Вейсбаха для условий: пластовый дебит в пределах 100 м3/сут, вязкость водо-нефтяной эмульсии - до 100 мПа⋅с, расстояние между датчиками - 10 м. Потери давления на трение между датчиками находятся в пределах 0,002 атм (0,2 кПа), что на два порядка (в сто раз) ниже, чем то необходимое изменение давления ΔР=0,2 атм, по которому по графику на фиг. 2 диагностируется снижение давления между датчиками ниже Рнас. Расчетами показано, что в рассматриваемых условиях потерями давления на трение можно пренебречь.

Основное отличие заявленного технического решения от прототипа заключается, по мнению авторов, в том, что рассматривается разность давлений между датчиками, которые находятся только в жидкой среде и на относительно малом расстоянии друг от друга. Благодаря применению двух датчиков давления в однотипной среде повышается точность оценки состояния и состава этой среды. По прототипу используется один датчик давления в зоне глубинного насоса, а второй - на устье скважины, в газовой среде, в котором давление будет формироваться газовой средой в зависимости от процесса дегазации жидкой среды. Расположение датчиков давления в средах с различными свойствами, имеющих межфазную поверхность, не способствует повышению точности оценки свойств одной среды. Достаточно отметить, что давление в газовой среде нефтедобывающей скважины может быть описано формулой Лапласа-Бабинэ, в то время как по прототипу используется значение давления на устье скважины, не в полной мере описывающее всю газовую среду в межтрубном пространстве скважины.

Способ определения давления насыщения нефти газом, заключающийся в последовательном изменении давления в скважине путем изменения производительности глубинного насоса регулированием частоты тока погружного электродвигателя, отличающийся тем, что предварительно между глубинным насосом и нефтяным пластом на фиксированном расстоянии друг от друга располагают два датчика давления, имеющих кабель электропитания с функцией обратной связи со станцией управления скважины на поверхности земли, на первом этапе способа путем снижения производительности насоса частотным преобразователем тока добиваются такого повышения давления в зоне датчиков, которое обеспечивает постоянную величину разницы давлений между датчиками, на втором этапе повышают производительность насоса частотным преобразователем тока и, как следствие, понижают давление в зоне датчиков до давлений ниже, чем давление насыщения нефти газом, по полученным опытным данным строят график зависимости разницы давлений между датчиками ΔР=P-Р от среднего их значения Р=(Р+Р)/2, где Р - давление в зоне нижнего датчика, Р - давление в зоне верхнего датчика, значение параметра Р, соответствующее переходу прямолинейной и горизонтальной части графика в криволинейную и ниспадающую часть, и является давлением насыщения нефти газом.
Способ определения давления насыщения нефти газом
Источник поступления информации: Роспатент

Показаны записи 71-80 из 167.
03.03.2019
№219.016.d23b

Проливной динамический стенд

Изобретение относится к области контрольно-измерительной техники и может быть использовано для тестирования, поверки и настройки расходомеров всех типов в динамическом режиме (при разных давлениях в трубопроводе). Проливной динамический стенд состоит из двух емкостей, одна из которых...
Тип: Изобретение
Номер охранного документа: 0002680986
Дата охранного документа: 01.03.2019
14.03.2019
№219.016.df26

Пластификатор поливинилхлорида

Изобретение относится к химии высокомолекулярных соединений, а именно к созданию пластификаторов на основе сложных эфиров фталевой кислоты, которые могут быть использованы в пластических массах на основе поливинилхлорида. Задачей изобретения является улучшение физико-механических показателей...
Тип: Изобретение
Номер охранного документа: 0002681631
Дата охранного документа: 11.03.2019
14.03.2019
№219.016.df6f

Турель бурового судна

Изобретение относится к области геологоразведки и морского бурения и касается постановки бурового судна на якорную стоянку в точке бурения. Предложена турель бурового судна, которая содержит верхнюю часть и нижнюю часть, представляющую собой буй с системой регулирования плавучести, соединенный...
Тип: Изобретение
Номер охранного документа: 0002681807
Дата охранного документа: 12.03.2019
15.03.2019
№219.016.dfd0

Способ определения натяга в одновинтовом насосе

Изобретение относится к технике добычи нефти, в частности к глубинным винтовым насосам, и может быть использовано в нефтедобывающей промышленности. Способ определения натяга в одновинтовом насосе включает измерение параметров пары винт 3 и обойма 1 и расчет натяга. Замеряют фактический...
Тип: Изобретение
Номер охранного документа: 0002681875
Дата охранного документа: 13.03.2019
16.03.2019
№219.016.e1f3

Оценка смачиваемости поверхности порового пространства горных пород на основе диффузионно-адсорбционной активности

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных и газовых залежей, при количественной интерпретации геофизических исследований скважин (ГИС), эксплуатации нефтяных месторождений. Техническим результатом является выделение на...
Тип: Изобретение
Номер охранного документа: 0002681973
Дата охранного документа: 14.03.2019
17.03.2019
№219.016.e248

Установка для испытания штанговых насосов

Изобретение относится к области механизированной добычи нефти, в частности к исследованию процессов, происходящих в скважинных штанговых насосах, непосредственно в их плунжерной паре. Установка содержит механизм возвратно-поступательного движения, плунжер с закупоренным каналом в цилиндре...
Тип: Изобретение
Номер охранного документа: 0002682231
Дата охранного документа: 15.03.2019
20.03.2019
№219.016.e32c

Способ получения 2-[(аллилокси)метил]-6-метил-1,4-диоксана

Изобретение относится к органической химии, конкретно к получению 2-[(аллилокси)метил]-6-метил-1,4-диоксана, который заключается в том, что проводят реакцию взаимодействия 4-[(аллилокси)]метил-2,2-диметил-1,3-диоксолана в бензоле в качестве растворителя с серной кислотой при температуре 70°C в...
Тип: Изобретение
Номер охранного документа: 0002682255
Дата охранного документа: 18.03.2019
29.03.2019
№219.016.edeb

Узел сбора конденсата системы очистки технологического газа компрессорной станции

Изобретение относится к области газовой промышленности, в частности к объектам магистрального газопровода, и может быть использовано для сокращения потерь природного газа при эксплуатации узла сбора конденсата системы очистки технологического газа компрессорной станции. Задачей изобретения...
Тип: Изобретение
Номер охранного документа: 0002683200
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee4e

Стенд для испытания винтовых насосов

Изобретение относится к исследованию процессов, происходящих в скважинных винтовых насосах. Стенд для испытания винтовых насосов содержит приводную часть 1, блок 2 контроля и регулирования параметров работы, станцию 7 управления, блок 3 подготовки, смешения и подачи жидкости, блок 4 подготовки...
Тип: Изобретение
Номер охранного документа: 0002682778
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee76

Способ удаления асфальтосмолопарафиновых отложений из нефтедобывающей скважины

Изобретение предназначено для применения в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения, например асфальтосмолопарафиновые отложения (АСПО). При осуществлении способа в колонну лифтовых труб...
Тип: Изобретение
Номер охранного документа: 0002682827
Дата охранного документа: 21.03.2019
Показаны записи 61-62 из 62.
02.06.2023
№223.018.7565

Устройство по определению скорости химической реакции веществ газометрическим способом

Изобретение относится к устройствам по измерению скорости химических реакций и может быть использовано для измерения кинетики растворения образцов карбонатных. Устройство по определению скорости реакции веществ газометрическим способом содержит колбообразный реактор из корпуса и крышки,...
Тип: Изобретение
Номер охранного документа: 0002767448
Дата охранного документа: 17.03.2022
16.06.2023
№223.018.7b61

Колонна лифтовых труб для скважинного электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и предназначено для использования на малодебитных скважинах, эксплуатируемых электроцентробежными насосами (ЭЦН) в периодическом режиме. Технический результат - повышение эффективности работы электроцентробежного насоса, работающего в...
Тип: Изобретение
Номер охранного документа: 0002751026
Дата охранного документа: 07.07.2021
+ добавить свой РИД