×
09.06.2019
219.017.7fde

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВЫХ ИЗДЕЛИЙ ИЗ НИКЕЛЕВЫХ ЖАРОПРОЧНЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных гетерофазных деформируемых никелевых сплавов, работающих в интервале температур 20-1000°С и предназначенных для изготовления корпусов, кожухов, экранов и других листовых изделий. Предложен способ получения листовых изделий из никелевых жаропрочных сплавов. Способ включает отливку слитка, деформационную обработку слитка, предварительную горячую прокатку и окончательную прокатку, формовку листовых изделий. Предварительную горячую прокатку проводят со степенью деформации не менее 70% и скоростью деформации 1-5 с при Тγ'+30÷100°С, окончательную прокатку проводят вхолодную со степенью деформации за проход 5-20%, с суммарной степенью деформации 20-80%, после предварительной горячей прокатки и окончательной холодной прокатки дополнительно проводят термообработку при Тγ'+30÷80°С и выдержке 15-60 минут с последующим быстрым охлаждением, а формовку листовых изделий осуществляют холодной штамповкой. Способ обеспечивает формирование оптимального структурного состояния с высокой технологической пластичностью при операциях горячей и холодной прокатки листов, высокие коэффициенты штампуемости, высокий уровень эксплуатационных свойств листовых изделий и снижение трудоемкости их изготовления. 2 табл., 4 пр.

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных гетерофазных деформируемых никелевых сплавов, работающих в интервале температур 20-1000°С и предназначенных для изготовления корпусов, кожухов, экранов и других листовых изделий.

Известен способ изготовления изделий из листов сплава In 718 методом сверхпластической формовки, включающий отливку слитка, горячую прокатку, закалку при температуре 1060°С с выдержкой в течение 15 мин, старение в интервале температур 730-800°С в течение 1-2 часов, холодную прокатку на лист со степенью деформации не менее 60%, рекристаллизационный отжиг при температуре 900°С в течение 30 минут и суперпластическую деформацию листа при температуре 970±10°С под напряжением 45-60 МПа (патент США №6328827).

Недостатками этого способа являются невозможность его использования для изготовления изделий из жаропрочных сплавов, не имеющих эффекта сверхпластичности, и низкая производительность процесса.

Известен способ изготовления полых заготовок за счет операции многократной вытяжки и их термической обработки, отличающийся тем, что перед каждой последующей операцией вытяжки полых заготовок из дисперсионно-твердеющего сплава осуществляют их термическую обработку в защитной среде с последующим ускоренным охлаждением, обеспечивающим образование однофазной структуры сплава (патент РФ №2064356).

Недостатком этого способа является отсутствие в исходном материале подготовленной однородной структуры с высоким уровнем технологической пластичности, что приводит к необходимости применения операций многопереходной вытяжки с промежуточными термообработками.

Наиболее близким к предлагаемому изобретению является способ изготовления листовых изделий из сплава типа Inconel 718, включающий отливку слитка, деформационную обработку слитка, предварительную горячую прокатку, окончательную прокатку и сверхпластическую формовку, отличающийся тем, предварительную горячую прокатку ведут в однофазной области сплава, а окончательную прокатку ведут в интервале температур 975-825°С со скоростью деформации 10-4-101 c-1, с суммарной степенью деформации не менее 50% по крайней мере за два прохода для обеспечения протекания динамической рекристаллизации (патент РФ №2269589).

Недостатками этого способа являются невозможность его использования для изготовления изделий из жаропрочных сплавов, не имеющих эффекта сверхпластичности, низкая производительность процесса, сложность холодной прокатки листов. Сплавы с зернами микронного размера имеют повышенную пластичность в интервале температур Тпрγ'-30-100°С, низкую пластичность и высокую прочность при нормальной температуре. Сплав Inconel 718 с зернами 6 мкм имеет предел текучести 1280 МПа и удлинение 17%. При формировании в сплаве структуры с зернами 0,5-1 мкм сплав будет иметь более высокий предел текучести и удлинение менее 17%, что создает значительные трудности при его холодной прокатке.

Технической задачей изобретения является разработка способа получения листовых изделий из никелевых жаропрочных сплавов, который обеспечивает формирование оптимального структурного состояния с высокой технологической пластичностью при операциях горячей и холодной прокатки листов, высокие коэффициенты штампуемости, высокий уровень эксплуатационных свойств листовых изделий и снижение трудоемкости их изготовления.

Для достижения поставленной задачи предложен способ получения листовых изделий из никелевых жаропрочных сплавов, включающий отливку слитка, деформационную обработку слитка, предварительную горячую прокатку и окончательную прокатку, формовку листовых изделий, отличающийся тем, что предварительную горячую прокатку проводят со степенью деформации не менее 70% и скоростью деформации 1-5 с-1 при Тпрγ'+30÷100°С, окончательную прокатку проводят вхолодную со степенью деформации за проход 5-20%, с суммарной степенью деформации 20-80%, после предварительной горячей прокатки и окончательной холодной прокатки дополнительно проводят термообработку при Тпрγ'+30÷80°С и выдержке 15-60 минут с последующим быстрым охлаждением, а формовку листовых изделий осуществляют холодной штамповкой.

Примеры осуществления

Для практического осуществления изобретения был выбран сплав ВЖ172, содержащий 20-24% γ'-фазы с температурой ее полного растворения 1020°С, сплав ВЖ159, содержащий 12-15% γ'-фазы с температурой ее полного растворения 1020°С, сплав ВЖ163, содержащий 12-15% γ'-фазы с температурой ее полного растворения 990°С.

Пример 1

Слитки из сплава ВЖ172 выплавляли в вакуумно-индукционной печи, затем ковали на прессе на сутунки толщиной 30-40 мм.

Сутунки подвергали предварительной горячей прокатке на листы толщиной 3,0-4 мм с суммарной степенью деформации 90% со скоростью деформации 1-5 с-1 после нагрева на температуру 1080°С (Тпрγ'+60). При этом в горячекатаных листах формировалась частично рекристаллизованная структура с зернами размером 5-40 мкм.

Горячекатаные листы подвергали термообработке при температуре 1080°С (Тпрγ'+60) с выдержкой 60 минут и охлаждением в воде, после проведения которой предел текучести сплава ВЖ172 σ0,2=520-550 МПа, относительное удлинение δ=45-50%.

Горячекатаные листы после термообработки прокатали вхолодную на листы толщиной 1,5-2,0 мм с суммарной степенью деформации 50%.

Листы после окончательной холодной прокатки подвергали термообработке при температуре 1080°С (Тпрγ'+60) с выдержкой 60 мин и охлаждением в воде.

Предлагаемый режим термообработки холоднокатаных листов обеспечивает высокую технологическую пластичность (штампуемость) сплава ВЖ172 при вытяжке Квыт=0,49.

Из холоднокатаных листов толщиной 1,6-2,0 мм вырезали заготовки диаметром 100,105 мм и изготавливали листовые изделия вытяжкой за один переход.

Пример 2

Листовые изделия из сплава ВЖ159 по предлагаемому способу изготавливали вытяжкой по параметрам, приведенным в таблице 1. Сутунки подвергали предварительной горячей прокатке на листы толщиной 6-7,5 мм с суммарной степенью деформации 90% со скоростью деформации 1-4,5 с-1 после нагрева на температуру 1120°С (Тпрγ'+100).

Горячекатаные листы подвергали термообработке при температуре 1100°С (Тпрγ'+80) с выдержкой 60 мин и охлаждением на воздухе, после проведения которой предел текучести сплава ВЖ159 σ0,2=350-380 МПа, относительное удлинение δ=65-70%, что обеспечивает максимальную (не менее 85%) технологическую пластичность при их последующей окончательной холодной прокатке.

Горячекатаные листы после термообработки прокатали вхолодную на листы толщиной 1,5-2,0 мм с суммарной степенью деформации 80%.

Листы после окончательной холодной прокатки подвергали термообработке при температуре 1100°С (Тпрγ'+80) с выдержкой 15 минут и охлаждением на воздухе.

Предлагаемый режим термообработки холоднокатаных листов обеспечивает высокую технологическую пластичность (штампуемость) сплава ВЖ159 при вытяжке Квыт=0,47.

Из холоднокатаных листов толщиной 1,2-1,5 мм вырезали заготовки диаметром 105,110 мм для изготовления листовых изделий вытяжкой за один переход.

Пример 3

Изделия из сплава ВЖ163 по предлагаемому способу изготавливали гибкой по параметрам, приведенным в таблице 1. Сутунки подвергали предварительной горячей прокатке на листы толщиной 3-4 мм с суммарной степенью деформации 75% со скоростью деформации 1-4 с-1 после нагрева на температуру 1050°С (Тпрγ'+60).

Горячекатаные листы подвергали термообработке при температуре 1020°С (Тпрγ'+30) с выдержкой 15 минут и охлаждением в воде, после проведения которой предел текучести сплава ВЖ163 σ0,2= 390-410 МПа, относительное удлинение δ=65-70%, что обеспечивает максимальную (не менее 75%) технологическую пластичность при их последующей окончательной холодной прокатке.

Горячекатаные листы после термообработки прокатали вхолодную на листы толщиной 2,4-3,2 мм со степенью деформации 20%.

Листы после окончательной холодной прокатки подвергали термообработке при температуре 1020°С (Тпрγ'+30) с выдержкой 15 минут и охлаждением в воде.

Предлагаемый режим термообработки холоднокатаных листов обеспечивает высокую технологическую пластичность (штампуемость) сплава ВЖ163 при гибке, минимальный относительный радиус гиба равен 0,5S, где S - толщина материала.

Из холоднокатаных листов толщиной 2,4-3,2 мм вырезали заготовки размером 80×100 мм для изготовления изделий типа «уголок» гибкой.

Свойства изделий из сплавов ВЖ172, ВЖ159, ВЖ163 приведены в таблице 2.

Пример №4 (прототип)

Заготовка из сплава Inconel 718 сечением 20 × 600 мм и длиной 2500 мм была изготовлена по технологии, включающей выплавку слитка в вакууме, двойной переплав слитка, последующую деформационную обработку слитка (выше 1000°С) и горячую прокатку с нагревом до температуры однофазной области (1050°С). Из указанной полосы были вырезаны заготовки 200×300×200 мм, которые нагревали до температуры 910°С и выдерживали при данной температуре в течение 30 мин. Затем осуществляли прокатку листа до требуемой толщины при данной температуре в изотермических условиях за четыре прохода, при этом последеформационный отжиг совмещали с нагревом под следующий проход прокатки. Скорость деформации при прокатке составляла 10-1с-1. В результате были получены листы толщиной 5 мм.

В предлагаемом способе режимы термообработки горячекатаных листов обеспечивают формирование структуры с зернами размером 20-35 мкм и за счет значительного снижения предела текучести сплавов и повышения относительного удлинения обеспечивают высокую технологическую пластичность сплавов при их последующей окончательной холодной прокатке и позволяют изготавливать листы толщиной до 1,2 мм и более тонкие без проведения повторных термообработок.

Предлагаемые режимы термообработки холоднокатаных листов обеспечивают высокую технологическую пластичность (штампуемость) сплавов при операциях холодной листовой штамповки, а также высокую производительность изготовления изделий.

Из таблицы 2 видно, что при изготовлении листовых изделий из сплава ВЖ172, ВЖ159, ВЖ163 предел текучести возрастает на 12-15%, временное сопротивление на 14%, KCU в 3 раза, длительная прочность в 1,4-1,5раза, предел усталости на базе 2×107ц, 20°С на 15-20%.

Получение листовых изделий по предлагаемому способу позволяет сократить по сравнению с прототипом время их изготовления на несколько порядков. При этом существенно повышается качество получаемых листовых изделий за счет отсутствия окисления поверхностного слоя и уменьшения шероховатости поверхности. При предлагаемом способе не требуется применения дорогостоящего оборудования.

Способ получения листовых изделий из никелевых жаропрочных сплавов, включающий отливку слитка, деформационную обработку слитка, предварительную горячую прокатку и окончательную прокатку, формовку листовых изделий, отличающийся тем, что предварительную горячую прокатку проводят со степенью деформации не менее 70% и скоростью деформации 1-5 с при Тγ'+30÷100°С, окончательную прокатку проводят в холодную со степенью деформации за проход 5-20%, с суммарной степенью деформации 20-80%, после предварительной горячей прокатки и окончательной холодной прокатки дополнительно проводят термообработку при Тγ'+30÷80°С и выдержке 15-60 мин с последующим быстрым охлаждением, а формовку листовых изделий осуществляют холодной штамповкой.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 40.
17.02.2018
№218.016.2c07

Стенд для испытания конструкции летательного аппарата на механическую прочность под действием изгибающего момента

Изобретение относится к конструкции стенда, который обеспечивает возможность проведения испытаний на механическую прочность конструкции летательного аппарата. Устройство содержит оснастку для фиксации испытываемой конструкции и систему нагружения. Система нагружения размещена под зоной...
Тип: Изобретение
Номер охранного документа: 0002643234
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.4eeb

Способ ремонта кессона крыла с сетчатыми композиционными нервюрами, композиционной обшивкой и металлическими лонжеронами

Изобретение относится к авиационной и космической технике и касается способа ремонта обшивки и сетчатой нервюры кессона крыла с сетчатыми композиционными нервюрами, композиционной обшивкой и металлическими лонжеронами. При ремонте обшивки и/или сетчатой нервюры кессона крыла летательного...
Тип: Изобретение
Номер охранного документа: 0002652765
Дата охранного документа: 28.04.2018
14.06.2018
№218.016.61af

Устройство для измерения составляющих векторов аэродинамической силы и момента

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения компонентов векторов аэродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов и гребных винтов судов, испытываемых в аэродинамических трубах,...
Тип: Изобретение
Номер охранного документа: 0002657340
Дата охранного документа: 13.06.2018
19.07.2018
№218.016.72da

Ферменная нервюра крыла с композиционными стойками

Изобретение относится к области авиации. Ферменная нервюра крыла летательного аппарата содержит верхний металлический пояс нервюры, нижний металлический пояс нервюры и стойки нервюры, соединённые с верхним и нижним металлическими поясами нервюры. Стойки нервюры выполнены полыми из...
Тип: Изобретение
Номер охранного документа: 0002661661
Дата охранного документа: 18.07.2018
12.09.2018
№218.016.862b

Универсальная специализированная технологическая оснастка для лазерной размерной обработки тонкостенных деталей сложной пространственной конфигурации

Изобретение относится к устройствам для закрепления тонкостенных деталей сложной пространственной конфигурации при размерной обработке. Оснастка содержит основание с подвижными опорами, выполненными с возможностью перемещения вдоль вертикальной оси. Каждая подвижная опора содержит подвижный...
Тип: Изобретение
Номер охранного документа: 0002666651
Дата охранного документа: 11.09.2018
22.09.2018
№218.016.894d

Способ определения коэффициентов интенсивности напряжений для трещин

Изобретение относится к области экспериментальной механики и предназначено для определения коэффициентов интенсивности напряжений (КИН) для трещин, возникающих при эксплуатации элементов авиационных конструкций. Сущность: осуществляют установку исследуемого образца, нагруженного внешними...
Тип: Изобретение
Номер охранного документа: 0002667316
Дата охранного документа: 18.09.2018
15.12.2018
№218.016.a7b1

Вентилятор турбовентиляторного авиационного двигателя

Изобретение относится к авиадвигателестроению и может использоваться при создании вентилятора турбовентиляторного двигателя. Предлагается вентилятор турбовентиляторного авиационного двигателя, включающий корпус, рабочее колесо и спрямляющий аппарат, спрямляющий аппарат снабжен аппаратом...
Тип: Изобретение
Номер охранного документа: 0002675031
Дата охранного документа: 14.12.2018
31.01.2019
№219.016.b579

Способ изготовления фиброармированных пеноблоков и плит, линия для изготовления фиброармированных пеноблоков и плит

Группа изобретений относится к промышленности строительных материалов, а именно к способу изготовления фиброармированных пеноблоков и плит для вентилируемых фасадов различной цветовой гаммы, а также пеноблоков, облицованных с одной или нескольких сторон плитами, используемых при изготовлении...
Тип: Изобретение
Номер охранного документа: 0002678458
Дата охранного документа: 29.01.2019
11.03.2019
№219.016.d5eb

Способ управления рулём высоты самолёта

Изобретение относится к способу управления рулем высоты самолета. Для управления рулем высоты измеряют угол тангажа, угол крена, вектор перегрузки, вектор угловой скорости, комплекс скоростных параметров, углы отклонения управляющих поверхностей самолета, вычисляют корректирующие сигналы...
Тип: Изобретение
Номер охранного документа: 0002681509
Дата охранного документа: 06.03.2019
29.03.2019
№219.016.f153

Вибропоглощающий слоистый материал

Изобретение относится к вибропоглощающему слоистому материалу для использования в качестве покрытий различных тонкостенных конструкций, работающих в широком диапазоне температур, в авиационной и аэрокосмической отраслях промышленности. Материал содержит синтетический волокнистый нетканый...
Тип: Изобретение
Номер охранного документа: 0002393095
Дата охранного документа: 27.06.2010
Показаны записи 1-5 из 5.
20.12.2015
№216.013.9c70

Способ изготовления ротора турбины из никелевого жаропрочного сплава

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки. Способ включает получение по меньшей мере двух заготовок компонентов...
Тип: Изобретение
Номер охранного документа: 0002571673
Дата охранного документа: 20.12.2015
13.01.2017
№217.015.825b

Жаропрочный свариваемый сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к области металлургии жаропрочных свариваемых деформируемых сплавов и изделий, выполненных из этих сплавов, и может быть использовано для изготовления элементов камеры сгорания, сопла и других узлов газотурбинных двигателей и установок, работающих до температуры 1250°C....
Тип: Изобретение
Номер охранного документа: 0002601720
Дата охранного документа: 10.11.2016
11.07.2019
№219.017.b2a9

Способ получения полуфабрикатов из высокопрочных никелевых сплавов

Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка...
Тип: Изобретение
Номер охранного документа: 0002694098
Дата охранного документа: 09.07.2019
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
+ добавить свой РИД