×
09.06.2019
219.017.7f4c

Результат интеллектуальной деятельности: СПОСОБ МЕХАНИЧЕСКИХ ИСПЫТАНИЙ УЗЛОВ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002442122
Дата охранного документа
10.02.2012
Аннотация: Изобретение относится к области динамических (ударных) испытаний узлов изделий, преимущественно узлов ракетных и артиллерийских снарядов. Сущность: динамически воздействуют на испытуемый узел и осуществляют последующую оценку состояния испытуемого узла. В процессе динамического воздействия дополнительно обеспечивают на испытуемый узел нагружение, имитирующее инерционно-упругое воздействие смежных узлов снаряда, в состав которого входит испытуемый узел. Стенд содержит подвижный стол с элементами крепления на нем испытуемого узла и формирователь динамического воздействия подвижного стола. Стенд снабжен формирователем инерционно-упругих воздействий, выполненным в виде упругого элемента, установленного между подвижным столом и испытуемым узлом и скрепленного с ними. Жесткость упругого элемента равна эквивалентной жесткости смежных узлов изделия, через которые передается динамическое воздействие на испытуемый узел в натурных условиях. Инерционная масса, воздействующая на упругий элемент, равна инерционной массе, воздействующей на смежные узлы изделия, через которые передается динамическое воздействие на испытуемый узел в натурных условиях. Технический результат: максимальное приближение условий испытаний к натурным и расширение функциональных возможностей стенда за счет увеличения амплитуды воспроизводимых ускорений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области динамических (ударных) испытаний узлов изделий, преимущественно узлов ракетных и артиллерийских снарядов.

Испытания изделий на прочность и устойчивость к динамическим (ударным) воздействиям, имитирующим динамические нагрузки при старте ракеты или выстреле артиллерийского снаряда, занимают значительный объем при отработке вновь разрабатываемых образцов ракетного и артиллерийского вооружения. Особенно остро стоит этот вопрос при отработке управляемых снарядов и ракет, так как при этом необходимо обеспечивать не только прочность узлов и элементов снаряда (ракеты), но и работоспособность узлов и элементов электроники и точной механики при воздействии значительных динамических нагрузок.

Известен стенд для испытаний изделий на ударное воздействие (см. Бураго А.Н. «Стенды для испытаний на ударные воздействия», Ленинградский дом научно-технической пропаганды. Л., 1960 г., с.18).

Стенд содержит тросовые направляющие, натянутые вертикально на станине. Рабочий стол (каретка) с элементами крепления на нем испытуемого изделия закреплен на раме, которая может перемещаться по направляющим. Раму удерживает отдельно перемещающаяся балка с блоком, через который перекинут трос. Трос проходит через блоки, укрепленные на станине, и наматывается на барабан лебедки с электродвигателем. Электродвигатель имеет электромагнитный тормоз, точно останавливающий в нужный момент стол при его подъеме на заданную высоту. Приспособление для удержания рамы со столом имеет электроспуск, разжимающий захваты и освобождающий раму со столом для падения. Формирователь динамического (ударного) воздействия подвижного стола выполнен в виде стального стержня, прикрепленного внизу к раме со столом, и свинцовой подушки, уложенной на основании стенда и взаимодействующей со стальным стержнем при падении рамы со столом.

При проведении испытаний рама со столом с закрепленным на нем изделием поднимается на требуемую высоту. Затем включается электроспуск, разжимающий захваты, удерживающие раму, которая начинает падать. В конце падения стальной стержень проникает в свинцовую подушку, где начинает тормозиться. При этом на раму со столом воздействует ускорение торможения (динамическая нагрузка), величина и закон изменения которого зависят от высоты подъема рамы со столом, формы и размеров стального стержня. Трение свинца о поверхность стержня демпфирует вибрации, в том числе нежелательные боковые колебания.

В данном стенде реализован способ механических испытаний изделий, включающий динамическое воздействие на испытуемое изделие и последующую оценку его состояния.

Максимальная величина пиковых ускорений, воспроизводимых на данном стенде, составляет от 200 до 2000 м/с2 (20…200 g), что не в полной мере удовлетворяет требованиям по величине пикового ускорения для отработки ракет с импульсными стартовыми двигателями и особенно артиллерийских снарядов, у которых величина ускорения достигает 4000…150000 м/с2 (400…15000 g). Кроме того, условия испытаний на данном стенде отличаются от натурных. При испытаниях на этом стенде изделие сначала разгоняют, а затем подвергают динамическому воздействию на этапе торможения. В натурных условиях стартовые ускорения значительной величины воздействуют на неподвижную ракету или снаряд.

Известен также стенд для испытаний изделий на ударное воздействие (см. Патент РФ №2235302, заявка №2002122582 от 20.08.2002 г., МПК7 G01N 3/313 - прототип).

Этот стенд содержит разгонное устройство в виде стволика, имеющего зарядную камеру с пороховым метательным зарядом и инициатором, подвижную каретку (стол) для установки испытуемого изделия, соединенную с помощью проушин с направляющими, и тормозное устройство. Разгонное устройство установлено на стволе артиллерийского орудия через опору, а направляющие выполнены гибкими из стальных канатов, пропущенных через пазы в опоре и натянутых вдоль ствола орудия, при этом они выполнены расходящимися под углом друг к другу в направлении движения каретки, а опорная поверхность проушин взаимодействует с направляющими по лучу их расхождения к продольной оси стенда. В предложенном техническом решении также раскрыты конструкции разгонного и тормозного устройств стенда. Данная группа изобретений реализует способ механических (ударных) испытаний изделий, включающий динамическое воздействие на испытуемый узел и последующую оценку его состояния, а также позволяет испытывать изделия в широком диапазоне ускорений с обеспечением условий испытаний, приближенных к реальным, т.к. динамическое воздействие прикладывается к неподвижному изделию.

Однако рассмотренные стенд и способ испытаний, реализованный в нем, имеют недостатки, которые поясним следующим.

С возрастанием амплитуды воспроизводимого пикового ударного ускорения и массы испытуемого изделия усложняются вопросы последующего торможения и улавливания разогнанной каретки с испытуемым изделием. В этой связи при проведении испытаний на значительные величины пиковых ударных ускорений (несколько десятков тысяч м/с2) не всегда в стендовых условиях возможно испытать изделие в целом. Поэтому испытывают отдельные узлы снаряда (ракеты). Кроме того, на этапах разработки, а также серийного производства, до проведения испытаний ракеты или снаряда в целом, их узлы и элементы проходят так называемые автономные испытания. При этом испытуемый узел, подвергаясь динамическому нагружению, не испытывает в процессе нагружения так называемого инерционно-упругого воздействия смежных узлов снаряда, в состав которого входит испытуемый узел.

Известно, что снаряд (ракета) представляет собой набор последовательно соединенных узлов, имеющих определенную массу и несущие корпусные детали которых обладают определенными жесткостными характеристиками. При старте снаряда (ракеты) из пусковой трубы (ствола орудия или пускового контейнера) возникают продольные колебания его узлов и элементов, обусловленные динамическим изменением выталкивающей силы (силы тяги импульсного ракетного двигателя или силы давления пороховых газов метательного заряда в заснарядном пространстве) и жесткостными характеристиками (упругостью) корпуса. Т.е. на импульсе ускорения, характерного для ударного нагружения абсолютно жесткого тела, присутствуют наложенные виброускорения (виброперегрузки), величина которых зависит, в основном, от скорости изменения (градиента) динамической силы, массовых и жесткостных характеристик узлов и элементов снаряда (ракеты). Возникающие при колебаниях вибрационные ускорения могут существенно увеличить максимальные нагрузки на узлы и элементы снаряда, что необходимо учитывать при его проектировании и экспериментальной отработке. Учет вибрационных ускорений (виброперегрузок), возникающих при выстреле, особенно важен для управляемых снарядов и ракет, имеющих в составе узлы и элементы электроники, оптики и точной механики. Величина этих виброускорений может превышать пиковое значение ударного ускорения для абсолютно жесткого тела на несколько десятков процентов.

Таким образом вышерассмотренные группа изобретений и реализованный в ней способ испытаний узлов не обеспечивают максимального приближения условий испытаний к натурным, т.к. в процессе динамического нагружения не воспроизводят на испытуемый узел инерционно-упругого воздействия смежных узлов снаряда.

Задачей, на решение которой направлено предлагаемое изобретение, является максимальное приближение условий испытаний к натурным и расширение функциональных возможностей стенда за счет увеличения амплитуды воспроизводимых ускорений.

Решение поставленной задачи достигается тем, что в известном способе механических испытаний узлов изделий, включающем динамическое (ударное) воздействие на испытуемый узел и последующую оценку состояния испытуемого узла, в процессе динамического воздействия дополнительно обеспечивают на испытуемый узел нагружение, имитирующее инерционно-упругое воздействие смежных узлов изделия, в состав которого входит испытуемый узел.

Реализация способа испытаний осуществляется в устройстве, включающем подвижный стол с элементами крепления на нем испытуемого узла, формирователь динамического (ударного) воздействия подвижного стола, которое дополнительно снабжено формирователем инерционно-упругих воздействий, выполненным в виде упругого элемента, установленного между подвижным столом и испытуемым узлом и скрепленного с ними, при этом жесткость упругого элемента равна эквивалентной жесткости смежных узлов изделия, через которые передается динамическое воздействие на испытуемый узел в натурных условиях, а инерционная масса, воздействующая на упругий элемент, равна инерционной массе, воздействующей на смежные узлы изделия, через которые передается динамическое воздействие на испытуемый узел в натурных условиях.

Подвижный стол с элементами крепления на нем испытуемого узла может быть выполнен в виде платформы или каретки. Формирователь динамического (ударного) воздействия подвижного стола может быть выполнен в виде разгонного устройства (в случае когда ударное воздействие создается на этапе разгона) или тормозного устройства (когда ударное воздействие создается на этапе торможения предварительно разогнанного подвижного стола с испытуемым изделием). Формирователь инерционно-упругих воздействий, выполненный в виде упругого элемента, может быть выполнен в виде цилиндрической обечайки (оболочки) или стакана из упругого материала. Выбор параметров такой обечайки производят из условия обеспечения прочности при воздействии на нее инерционных нагрузок (механические напряжения в обечайке меньше предела текучести) и необходимых жесткостных характеристик (эквивалентных жесткостным характеристикам последовательно соединенных узлов снаряда, через которые передается нагрузка на испытуемый узел в натурных условиях). Жесткость упругой обечайки (оболочки) определяется по формуле:

где

E - модуль упругости обечайки; π=3,14; D - диаметр обечайки;

δ - толщина стенки; S - площадь поперечного сечения обечайки.

Жесткостные характеристики узлов (отсеков) снаряда, через которые передается нагрузка на испытуемый узел в натурных условиях, следует определять экспериментально путем статического нагружения (в этом случае можно определить и нелинейности жесткостей), но допустимо определять и расчетным путем.

Жесткость последовательно соединенных двух отсеков (узлов) снаряда, через которые передается нагрузка на испытуемый узел в натурных условиях, расчетным путем определяется следующим образом:

где

C1, С2 - соответственно жесткости корпусов (обечаек) первого и последовательно скрепленного с ним второго отсека снаряда, через которые нагрузка передается на испытуемый узел (отсек) в натурных условиях.

При условии, что корпусы первого и второго отсеков выполнены из одного материала, например стали, то последнее соотношение преобразуется в следующее:

где

S1, S2 - площади поперечного сечения корпусов (обечаек) первого и второго отсеков (узлов), через которые нагрузка передается на испытуемый узел в натурных условиях соответственно;

L1, L2 - длина этих корпусов соответственно.

Учитывая, что жесткость упругого элемента (обечайки) формирователя инерционно-упругих воздействий должна быть эквивалентной (равной) жесткости последовательно соединенных корпусов первого и второго отсеков, получаем соотношение:

из которого определяются параметры упругого элемента (D, L, δ).

Пример конкретного исполнения устройства предлагаемого изобретения поясняется графическими материалами. На Фиг.1 показана схема устройства. На Фиг.2 схематично показаны графики изменения продольного ускорения «ax» (перегрузки «nx») без и с воспроизведением инерционно-упругих воздействий.

Устройство для реализации способа механических (ударных) испытаний включает подвижную каретку (стол) 1 для установки испытуемого узла 2, который в каретке закрепляется с помощью крепежных элементов, например болта 3 и винтов 4. Формирователь динамического (ударного) воздействия выполнен в виде разгонного устройства, представляющего собой короткоствольную мортиру 5, содержащую зарядную камеру 6 с пороховым метательным зарядом 7, который инициируется электровоспламенителем (пиропатроном) 8. Каретка 1 в исходном положении задвинута в мортиру 5. Давление в камере 6 измеряется датчиком 9, электрически соединенным через согласующе-усилительные устройства с регистратором (персональным компьютером), которые на схеме не показаны. Позицией 10 обозначен формирователь инерционно-упругих воздействий, выполненный в виде упругой обечайки (оболочки). Подвижная каретка 1 установлена на тросовых направляющих 11. Основание стендового устройства обозначено позицией 12. Датчик ускорений 13 через обрывную линию связи 14 соединен с согласующе-усилительными устройствами и регистратором (на схеме не показаны). Как было показано ранее параметры упругой обечайки 10 можно определять расчетным путем. Но окончательно правильность выбора параметров упругого элемента 10 необходимо проверять экспериментально путем статического нагружения, а также динамического нагружения на стенде совместно с испытуемым узлом и с записью характера и величины воспроизводимых ускорений. Остальные узлы и элементы, необходимые для функционирования устройства, конструктивно могут быть выполнены как в стенде, выбранном за прототип.

Реализацию способа механических (ударных) испытаний узлов изделий покажем на примере работы вышеописанного устройства.

Перед испытанием настраиваются измерительно-регистрирующая аппаратура и система дистанционного запуска и синхронизации. При подаче электрического напряжения на электровоспламенитель 8 срабатывает пороховой метательный заряд 7, продукты сгорания которого создают давление в камере 6 и воздействуют на поддон каретки 1. Под действием давления продуктов сгорания порохового метательного заряда каретка 1 с установленным в ней через формирователь инерционно-упругих воздействий 10 испытуемым узлом 2 ускоряется и испытывает при этом продольное ускорение, соответствующее продольному ускорению в натурных условиях.

Т.е. помимо динамического воздействия, характерного для ударного нагружения испытуемого узла при ускорении пороховыми газами каретки 1, за счет установки между кареткой 1 и испытуемым узлом 2 упругого элемента (формирователя 10), обладающего определенными жесткостными (упругими) характеристиками, на испытуемый узел дополнительно будет обеспечиваться инерционно-упругое воздействие (воздействие наложенных виброускорений), имитирующее воздействие смежных узлов в натурных условиях (см. Фиг.2).

Скорость изменения (градиент) динамической силы, влияющая на величину воспроизводимых наложенных виброускорений и определяемая работой порохового разгонного устройства, может регулироваться использованием в метательном заряде 7 порохов с различными скоростями горения и толщинами горящих сводов (размерами пороховых зерен), а также величиной свободного объема зарядной камеры 6 при размещении в ней метательного заряда 7 (плотностью заряжания метательного заряда 7 в камере 6).

Выше было показано как проводится испытание узла, представляющего собой головной (передний) отсек снаряда. При проведении испытаний срединного отсека (узла, расположенного между головным и хвостовым отсеками снаряда) для обеспечения выполнения признака формулы «…а инерционная масса, воздействующая на упругий элемент, равна инерционной массе, воздействующей на смежные узлы (узел) изделия, через которые передается динамическое воздействие на испытуемый узел в натурных условиях» необходимо закрепление на испытуемый узел головного отсека (узла) или его весового имитатора, выполняющего роль «наседающей» массы при ударном нагружении испытуемого узла. Так как в этом случае динамическое воздействие в натурных условиях осуществляется только через хвостовой отсек, то жесткость упругого элемента 10 выбирают эквивалентной жесткости корпуса хвостового отсека.

Таким образом предложенные способ механических (ударных) испытаний узлов изделий и устройство, реализующее данный способ испытаний, позволяют максимально приблизить условия испытаний к натурным путем воспроизведения в стендовых условиях на испытуемый узел инерционно-упругого воздействия, имитирующего воздействие на него смежных узлов снаряда в натурных условиях, и расширить функциональные возможности стенда за счет увеличения амплитуды воспроизводимых ускорений.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 438.
20.03.2019
№219.016.eaa2

Генератор прямоугольных импульсов

Изобретение относится к импульсной технике и может быть использовано в системах автоматического управления и контрольно-измерительных устройствах. Генератор прямоугольных импульсов содержит генератор опорной частоты (ГОЧ)(1), выход которого соединен с первым входом элемента И (3), второй вход...
Тип: Изобретение
Номер охранного документа: 02150783
Дата охранного документа: 10.06.2000
23.03.2019
№219.016.eca4

Способ и стенд для исследования разрушения порохового заряда импульсного рдтт в полете

Способ исследования разрушения порохового заряда импульсного ракетного двигателя твердого топлива в полете включает запуск из трубы весового имитатора ракеты с работающим двигателем, гашение и анализ частиц пороховых элементов. Частицы пороховых элементов отбирают и улавливают непосредственно...
Тип: Изобретение
Номер охранного документа: 02243404
Дата охранного документа: 27.12.2004
23.03.2019
№219.016.ecac

Способ защиты электрических цепей прибора от воздействия электромагнитных полей

Изобретение относится к области защиты аппаратуры от воздействия электромагнитных полей. Техническим результатом изобретения является упрощение конструкции и снижение массогабаритных характеристик прибора, а также уменьшение трудоемкости его изготовления. При реализации способа защиты...
Тип: Изобретение
Номер охранного документа: 02219598
Дата охранного документа: 20.12.2003
29.03.2019
№219.016.eec5

Способ контроля герметичности автопилотного блока управляемых артиллерийских снарядов и устройство для его осуществления

Изобретение относится к управляемым снарядам и ракетам, в частности к контролю герметичности их автопилотных блоков. В способе контроля герметичности автопилотный блок в выключенном состоянии со сложенными внутрь его корпуса рулями предварительно устанавливают на установочном столе, покрытом...
Тип: Изобретение
Номер охранного документа: 0002269740
Дата охранного документа: 10.02.2006
29.03.2019
№219.016.eee5

Резьбовое соединение отсеков корпуса летательного аппарата

Изобретение относится к ракетной технике и артиллерии. Резьбовое соединение отсеков корпуса летательного аппарата содержит один отсек с внутренней резьбой и второй отсек. Второй отсек снабжен кольцевым пазом с расположенным в нем разрезным резьбовым кольцом, выполненным с наружной резьбой,...
Тип: Изобретение
Номер охранного документа: 0002268405
Дата охранного документа: 20.01.2006
29.03.2019
№219.016.eefe

Система электропитания подвижных объектов на два уровня напряжения

Изобретение относится к электротехнике и может быть использовано в системах электропитания подвижных объектов, требующих два уровня напряжения при одном источнике питания. Технический результат заключается в повышении надежности системы электропитания на два уровня напряжения при ее установке в...
Тип: Изобретение
Номер охранного документа: 0002261512
Дата охранного документа: 27.09.2005
29.03.2019
№219.016.ef41

Управляемый снаряд

Изобретение относится к области вооружения. Управляемый снаряд, вращающийся по крену, выполненный по схеме "утка" содержит цилиндрический корпус, маршевый двигатель, аэродинамические органы управления и стабилизатор в виде складывающихся на боковую поверхность хвостовой части корпуса снаряда...
Тип: Изобретение
Номер охранного документа: 0002288436
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.ef43

Управляемая ракета в транспортно-пусковом контейнере

Изобретение относится к области вооружения. Управляемая ракета в транспортно-пусковом контейнере содержит боевую часть с лидирующим кумулятивным зарядом и бортовую аппаратуру, у которой электрические цепи пуска и управления соединены через контейнер с наземной аппаратурой управления....
Тип: Изобретение
Номер охранного документа: 0002288423
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.ef4d

Управляемая ракета

Изобретение относится к области вооружения. Управляемая ракета содержит отсек управления, разгонный двигатель, боевую часть, стартовый двигатель и хвостовой отсек с катушкой проводной линии связи и консолями стабилизатора. Разгонный двигатель размещен между отсеком управления и боевой частью,...
Тип: Изобретение
Номер охранного документа: 0002288437
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.ef54

Упаковка для изделий с оптической системой

Изобретение относится к оборонной технике, в частности к упаковке изделий с оптической системой, предпочтительно к оптико-механическим блокам для прицел-приборов наведения к управляемым аппаратам в луче лазера, которые транспортируются с неоднократной погрузкой и выгрузкой всеми видами...
Тип: Изобретение
Номер охранного документа: 0002287469
Дата охранного документа: 20.11.2006
Показаны записи 31-40 из 71.
26.08.2017
№217.015.e40a

Многофункциональная система радиозондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано при разработке систем радиозондирования атмосферы (CP) построенных на основе применения радиолокационного метода измерения пространственных координат аэрологического радиозонда (АРЗ) и использования сигналов спутниковых...
Тип: Изобретение
Номер охранного документа: 0002626410
Дата охранного документа: 27.07.2017
19.01.2018
№218.016.03d7

Способ пропорционального управления воздушно-динамическим рулевым приводом ракеты и устройство для его реализации

Предлагаемая группа изобретений относится к области ракетостроения и может быть использована в оснащенных воздушно-динамическим рулевым приводом (ВДРП) ракетах с широким диапазоном изменения скорости полета в качестве системы пропорционального управления ВДРП. Технический результат заключается...
Тип: Изобретение
Номер охранного документа: 0002630462
Дата охранного документа: 08.09.2017
04.04.2018
№218.016.31fc

Управляемый снаряд

Изобретение относится к области вооружения, в частности к области малогабаритных управляемых снарядов, преимущественно с дозвуковыми и трансзвуковыми скоростями полета, и может быть использовано в конструкциях с различными аэродинамическими схемами. Управляемый снаряд, выполненный по...
Тип: Изобретение
Номер охранного документа: 0002645322
Дата охранного документа: 20.02.2018
04.04.2018
№218.016.3589

Способ наведения телеуправляемой ракеты

Изобретение относится к ракетной технике и может быть использовано в системах наведения телеуправляемых ракет. Технический результат - снижение потребной перегрузки ракеты, динамической ошибки наведения с обеспечением требуемых углов встречи ракеты с целью и расширение условий применения...
Тип: Изобретение
Номер охранного документа: 0002645850
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.4149

Способ отстрела носового обтекателя управляемых артиллерийских снарядов и мин (варианты)

Группа изобретений относится к области вооружения и может быть использована при проектировании и модернизации управляемых боеприпасов, включающих в свою конструкцию отделяемый на траектории носовой обтекатель. Группа изобретений предназначена для обеспечения безударного отделения носового...
Тип: Изобретение
Номер охранного документа: 0002649202
Дата охранного документа: 30.03.2018
18.05.2018
№218.016.514e

Способ управления летательным аппаратом, оснащенным аппаратурой спутниковой навигации, и устройство для его осуществления

Изобретение относится к области управления, в частности управляемому вооружению, может найти применение в системах управления летательных аппаратов (ЛА), снарядов и ракет, у которых траекторию полета на начальном и среднем участках корректируют по данным приемника сигналов с навигационных...
Тип: Изобретение
Номер охранного документа: 0002653168
Дата охранного документа: 07.05.2018
14.06.2018
№218.016.61b7

Способ одновременного наведения управляемых ракет с лазерными полуактивными головками самонаведения и устройство для его осуществления

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия с лазерными полуактивными головками самонаведения (ЛПГСН). Способ одновременного наведения управляемых ракет (УР) с ЛПГСН включает определение координат целей с помощью лазерного дальномера -...
Тип: Изобретение
Номер охранного документа: 0002657356
Дата охранного документа: 13.06.2018
04.07.2018
№218.016.6a4e

Способ вывода вращающейся по углу крена ракеты с гироскопом направления в зону захвата цели головкой самонаведения и система для его осуществления

Изобретение относится к системам управления, в частности к ракетной технике с головками самонаведения, и может использоваться в комплексах управляемого вооружения, расположенных на воздушных носителях. Технический результат – повышение надежности на основе повышения вероятности поражения целей...
Тип: Изобретение
Номер охранного документа: 0002659622
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6ae3

Оптический прицел системы управления огнем

Изобретение относится к области оптического приборостроения и касается оптического прицела системы управления огнем. Прицел включает в себя визирный и обзорный каналы, канал наведения и устройство выверки, включающее в себя регуляторы выверки оптических осей канала наведения и визирного канала....
Тип: Изобретение
Номер охранного документа: 0002659962
Дата охранного документа: 04.07.2018
29.03.2019
№219.016.eec5

Способ контроля герметичности автопилотного блока управляемых артиллерийских снарядов и устройство для его осуществления

Изобретение относится к управляемым снарядам и ракетам, в частности к контролю герметичности их автопилотных блоков. В способе контроля герметичности автопилотный блок в выключенном состоянии со сложенными внутрь его корпуса рулями предварительно устанавливают на установочном столе, покрытом...
Тип: Изобретение
Номер охранного документа: 0002269740
Дата охранного документа: 10.02.2006
+ добавить свой РИД