×
09.06.2019
219.017.7e35

СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ГИДРОКСИАПАТИТА ДЛЯ МЕДИЦИНЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения нанодисперсного гидроксиапатита осаждением из растворов солей кальция и фосфатов щелочных металлов и/или аммония в присутствии биополимера, например желатина или крахмала, концентрацией 0,1-1 мас.%. Образующийся осадок фосфата кальция, имеющий соотношение Са/Р 1,67, для формирования частиц нанодисперсного гидроксиапатита подвергают старению в течение 24 часов при комнатной температуре, а затем прокаливают при 600-700°С в течение 0,5-4 часов. Способ позволяет получать порошки нанодисперсного гидроксиапатита, пригодного для производства медицинских материалов, который имеет размер частиц 5-50 нм. 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к способу получения нанодисперсного гидроксиапатита, который может быть использован для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, производства зубных пломб, зубных паст, сорбентов и пр.

Известны способы получения гидроксиапатита путем смешивания растворов H3PO4 и Са(ОН)2 в двухступенчатом реакторе [1. Патент США 4324773. Процесс получения гидроксиапатита. С01В 25/32, опубл. 13.04.1982]. Недостатком данного способа является необходимость постоянного и жесткого контроля скорости потоков реагентов, эффективности перемешивания и величины рН в реакционной массе. Незначительное отклонение от заданных параметров ведет к получению фосфатов кальция, не отвечающих химической формуле гидроксиапатита.

Известно, что при высоких концентрациях исходных веществ (30% Са(ОН)2 и 80% H3PO4) и высоких скоростях их подачи в реактор (31,3 кг/час Са(ОН)2 и 70,8 кг/час H3PO4) вероятность отклонения от технологических параметров, указанных в патенте [2. Патент США 4324772. Процесс получения гидроксиапатита. С01В 25/32, опубл. 13.04.1982 г.], весьма велика.

Наиболее близким по технической сущности и результату к предлагаемому способу является получение гидроксиапатита [3. Патент Российской Федерации 2149827. Способ получения мелкодисперсного гидроксиапатита высокой чистоты, опубл. 27.05.2000]. Мелкодисперсный ГА получают путем взаимодействия суспензии гидроксида кальция и раствора фосфорной кислоты, причем суспензию гидроксида кальция готовят при воздействии ультразвука частотой 9-15 кГц и температуре 40-60°С. Последующее добавление раствора фосфорной кислоты с концентрацией 6-9% производят со скоростью 70-120 мл/мин. Формирование суспензии гидроксиапатита с концентрацией основного вещества 320-350 г/л и размером частиц 1-5 мкм происходит в отстойнике в течение 20-24 часов. Преимуществами данного способа являются высокий выход ГА, возможность получения высокочистого гидроксиапатита без примесей других соединений кальция и фосфора, контролируемого с помощью рентгеновской дифракции. К недостаткам данного способа следует отнести больший размер частиц ГА по сравнению с предлагаемым в настоящем изобретении.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа получения нанодисперсного гидроксиапатита.

Технологическим результатом изобретения является получение гидроксиапатита с размером частиц 5-50 нм.

Технический результат достигается тем, что в способе получения нанодисперсного гидроксиапатита для медицины осаждением из растворов солей кальция и фосфатов щелочных металлов и/или аммония согласно изобретению в процессе осаждения гидроксиапатита к реакционной смеси исходных компонентов добавляют биополимер в виде водных коллоидных растворов желатина или крахмала концентрации 0,1-1 мас.%, образовавшийся осадок фосфата кальция с соотношением Са/Р 1,67 подвергают старению в течение 24 часов при комнатной температуре, прокаливают при температуре 600-700°С в течение 0,5-4 часов с образованием частиц гидроксиапатита размером 5-50 нм.

Сущность изобретения заключается в том, что при добавлении биополимеров к реакционной смеси исходных компонентов за счет образования пространственной сетки биополимера и специфического взаимодействия между ионами кальция и анионными группировками биополимера увеличивается число центров кристаллизации и, таким образом, размер образующихся частиц фосфата кальция снижается. Кроме того, при термообработке происходит выгорание биополимера, что позволяет сохранить достигнутые размеры частиц ГА.

Уменьшение количества вводимых биополимеров приводит к получению порошков более низкой дисперсности; увеличение количества биополимеров свыше 1 мас.% (для желатина) или 0,2 мас.% (для крахмала) приводит к неоднородности фазового состава и к уменьшению дисперсности образующегося продукта. (Табл.1а, б.)

Таблица 1а
Зависимость размера частиц и фазового состава получаемого продукта от концентрации желатина в растворе
Концентрация желатина, мас.% Размер частиц, нм Фазовый состав
0,05 50-70 ГА
0,1 40-50 ГА
0,2 20-30 ГА
0,5 5-20 ГА
1 15-25 ГА
1,5 50-70 ГА+ТКФ

Таблица 1б
Зависимость размера частиц и фазового состава получаемого продукта от концентрации крахмала в растворе
Концентрация крахмала, мас.% Размер частиц, нм Фазовый состав
0,01 60-80 ГА
0,02 40-50 ГА
0,04 35-45 ГА
0,05 20-30 ГА
0,07 15-25 ГА
0,1 10-20 ГА
0,15 10-20 ГА+ТКФ

Значительное, по сравнению с прототипом, уменьшение размера частиц достигается за счет применения растворов биополимеров оптимальной концентрации.

Ввиду того что природа аниона и катиона в случае солей кальция и фосфата, соответственно, не оказывает влияния на процесс образования и размер зародышей фосфата кальция в присутствии биополимера, в примерах рассмотрены лишь случаи осаждения фосфата кальция из нитрата кальция и двухзамещенного фосфата аммония.

Для использования получаемого продукта в медицине необходимо использовать исходные реактивы квалификации не ниже «хч», а также дистиллированную воду.

Пример 1

Получение гидроксиапатита осуществляется в стеклянном реакторе с пропеллерной мешалкой и капельной воронкой. В реактор помещают раствор нитрата кальция концентрации 0,1 моль/л, добавляют водный раствор желатина и при перемешивании вводят 25%-ный водный раствор аммиака. Затем по каплям при непрерывном перемешивании добавляют раствор фосфата аммония концентрации 0,06 моль/л. Содержание желатина в растворе составляет 0,5 мас.%. Перемешивание продолжают в течение 2 часов. Через 24 часа образовавшийся осадок фильтруют с отсасыванием, промывают дистиллированной водой и сушат при температуре 100-120°С в течение 5-6 часов. Высушенный ксерогель измельчают корундовыми шарами в планетарной мельнице. Измельченный порошок прокаливают при температуре 700°С в течение 1 часа. После прокаливания образуется чистый однофазный продукт - ГА с размером частиц 5-20 нм.

Пример 2

Получение гидроксиапатита осуществляется в стеклянном реакторе с пропеллерной мешалкой и капельной воронкой. В реактор помещают раствор нитрата кальция концентрации 0,1 моль/л, добавляют водный раствор желатина и при перемешивании вводят 25%-ный водный раствор аммиака. Затем по каплям при непрерывном перемешивании добавляют раствор фосфата аммония концентрации 0,06 моль/л. Содержание желатина в растворе составляет 0,05 мас.%. Перемешивание продолжают в течение 2 часов. Через 24 часа образовавшийся осадок фильтруют с отсасыванием, промывают дистиллированной водой и сушат при температуре 100-120°С в течение 5-6 часов. Высушенный ксерогель измельчают корундовыми шарами в планетарной мельнице. Измельченный порошок прокаливают при температуре 700°С в течение 1 часа. После прокаливания образуется чистый однофазный продукт - ГА с размером частиц 50-70 нм.

Пример 3

Получение гидроксиапатита осуществляется в стеклянном реакторе с пропеллерной мешалкой и капельной воронкой. В реактор помещают раствор нитрата кальция концентрации 0,1 моль/л, добавляют водный раствор желатина и при перемешивании вводят 25%-ный водный раствор аммиака. Затем по каплям при непрерывном перемешивании добавляют раствор фосфата аммония концентрации 0,06 моль/л. Содержание желатина в растворе составляет 1,5 мас.%. Перемешивание продолжают в течение 2 часов. Через 24 часа образовавшийся осадок фильтруют с отсасыванием, промывают дистиллированной водой и сушат при температуре 100-120°С в течение 5-6 часов. Высушенный ксерогель измельчают корундовыми шарами в планетарной мельнице. Измельченный порошок прокаливают при температуре 700°С в течение 1 часа. После прокаливания образуется двухфазный продукт - ГА/ТКФ (80/20) с размером частиц 50-70 нм.

Пример 4

Получение гидроксиапатита осуществляется в стеклянном реакторе с пропеллерной мешалкой и капельной воронкой. В реактор помещают раствор нитрата кальция концентрации 0,5 моль/л, добавляют водный раствор крахмала и при перемешивании вводят 25%-ный водный раствор аммиака. Затем по каплям при непрерывном перемешивании добавляют раствор фосфата аммония концентрации 0,3 моль/л. Содержание крахмала в растворе составляет 0,01 мас.%. Перемешивание продолжают в течение 2 часов. Через 24 часа образовавшийся осадок фильтруют с отсасыванием, промывают дистиллированной водой и сушат при температуре 100-120°С в течение 5-6 часов. Высушенный ксерогель измельчают корундовыми шарами в планетарной мельнице. Измельченный порошок прокаливают при температуре 600°С в течение 2 часов. После прокаливания образуется чистый однофазный продукт - ГА с размером частиц 60-80 нм.

Пример 5

Получение гидроксиапатита осуществляется в стеклянном реакторе с пропеллерной мешалкой и капельной воронкой. В реактор помещают раствор нитрата кальция концентрации 0,5 моль/л, добавляют водный раствор крахмала и при перемешивании вводят 25%-ный водный раствор аммиака. Затем по каплям при непрерывном перемешивании добавляют раствор фосфата аммония концентрации 0,3 моль/л. Содержание крахмала в растворе составляет 0,15 мас.%. Перемешивание продолжают в течение 2 часов. Через 24 часа образовавшийся осадок фильтруют с отсасыванием, промывают дистиллированной водой и сушат при температуре 100-120°С в течение 5-6 часов. Высушенный ксерогель измельчают корундовыми шарами в планетарной мельнице. Измельченный порошок прокаливают при температуре 600°С в течение 2 часов. После прокаливания образуется двухфазный продукт - ГА/ТКФ (75/25) с размером частиц 10-20 нм.

Пример 6

Получение гидроксиапатита осуществляется в стеклянном реакторе с пропеллерной мешалкой и капельной воронкой. В реактор помещают раствор нитрата кальция концентрации 0,5 моль/л, добавляют водный раствор крахмала и при перемешивании вводят 25%-ный водный раствор аммиака. Затем по каплям при непрерывном перемешивании добавляют раствор фосфата аммония концентрации 0,3 моль/л. Содержание крахмала в растворе составляет 0,1 мас.%. Перемешивание продолжают в течение 2 часов. Через 24 часа образовавшийся осадок фильтруют с отсасыванием, промывают дистиллированной водой и сушат при температуре 100-120°С в течение 5-6 часов. Высушенный ксерогель измельчают корундовыми шарами в планетарной мельнице. Измельченный порошок прокаливают при температуре 600°С в течение 2 часов. После прокаливания образуется чистый однофазный продукт - ГА с размером частиц 10-20 нм.

Способ получения нанодисперсного гидроксиапатита для медицины осаждением из растворов солей кальция и фосфатов щелочных металлов и/или аммония, отличающийся тем, что в процессе осаждения гидроксиапатита к реакционной смеси исходных компонентов добавляют биополимер в виде водных коллоидных растворов желатина или крахмала концентрации 0,1-1 мас.%, образовавшийся осадок фосфата кальция с соотношением Са/Р 1,67 подвергают старению в течение 24 ч при комнатной температуре, прокаливают при температуре 600-700°С в течение 0,5-4 ч с образованием частиц гидроксиапатита размером 5-50 нм.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
20.02.2013
№216.012.26d5

Способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью

Разработан способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью, для использования в реконструктивно-пластической хирургии и стоматологии при замещении костных дефектов. Способ включает синтез цинк-, медь-, железо- или сереброзамещенного гидроксиапатита из...
Тип: Изобретение
Номер охранного документа: 0002475461
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2b40

Способ электродугового жидкофазного углетермического восстановления железа из оксидного сырья и устройство для его осуществления

Изобретение относится к бескоксовой металлургии, в частности к производству железа и сплавов на его основе посредством электродугового жидкофазного углетермического восстановления. Железосодержащее оксидное сырье и углеродсодержащий восстановитель подают в область термического действия дуги в...
Тип: Изобретение
Номер охранного документа: 0002476599
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b42

Способ электродугового углетермического восстановления железа из титаномагнетита с получением металлопродукта в виде порошка и гранул и устройство для его осуществления

Изобретение относится к бескоксовой металлургии, в частности к производству железа и сплавов на его основе из дисперсного оксидного сырья посредством электродугового жидкофазного углетермического восстановления. Способ осуществляют в устройстве, при этом возбуждают электрическую дугу между...
Тип: Изобретение
Номер охранного документа: 0002476601
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c94

Способ получения текстурированных покрытий с анизотропной коэрцитивной силой на основе магнитных соединений

Изобретение может быть использовано при изготовлении устройств магнитной записи высокой плотности и постоянных магнитов. Способ получения текстурированных покрытий с анизотропной коэрцитивной силой на основе магнитных соединений включает синтез магнитных композиционных порошков. Для этого...
Тип: Изобретение
Номер охранного документа: 0002476939
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.3713

Способ электрохимической переработки металлических отходов сплавов вольфрам-медь

Изобретение относится к регенерации вторичного металлсодержащего сырья, в том числе к электрохимической переработке металлических отходов сплавов вольфрам-медь, содержащих 7-50% Cu. Способ включает анодное окисление отходов в 10-15%-ном растворе аммиака под действием постоянного электрического...
Тип: Изобретение
Номер охранного документа: 0002479652
Дата охранного документа: 20.04.2013
10.05.2013
№216.012.3de0

Способ деформационно-термического производства листового проката

Изобретение относится к области металлургии, в частности к технологии получения листового проката, используемого в бронезащитных конструкциях. Для повышения бронестойкости листового проката осуществляют выплавку стали, ее рафинирование с получением стали, содержащей, мас.%: 0,25-0,35 С, 0,6-0,7...
Тип: Изобретение
Номер охранного документа: 0002481407
Дата охранного документа: 10.05.2013
27.06.2013
№216.012.50ba

Способ бестигельного электродугового жидкофазного восстановления железа из оксидного сырья и устройство для его осуществления

Группа изобретений относится к бескоксовой металлургии, в частности к производству железа и сплавов на его основе посредством электродугового жидкофазного углетермического восстановления оксидного сырья. Железосодержащее оксидное сырье и углеродный восстановитель в виде расходуемой стержневой...
Тип: Изобретение
Номер охранного документа: 0002486259
Дата охранного документа: 27.06.2013
29.03.2019
№219.016.f4cc

Пористый композиционный хитозан-желатиновый матрикс для заполнения костных дефектов

Изобретение относится к области медицины и касается композиционных материалов для пластической реконструкции поврежденных костных тканей. Высокопористые эластичные хитозан-желатиновые матриксы с пористостью более 90% состоит из хитозана и содержит желатин до 60 мас.% и лаурилсульфат натрия до...
Тип: Изобретение
Номер охранного документа: 0002421229
Дата охранного документа: 20.06.2011
29.03.2019
№219.016.f711

Способ получения нанопорошков систем элемент-углерод

Изобретение может быть использовано в химической промышленности. Получение нанопорошков систем элемент-углерод из элементов и их соединений проводится в термической плазме смеси углеводорода с одним из компонентов или смесью компонентов из группы: водяной пар, диоксид углерода. В реагирующей...
Тип: Изобретение
Номер охранного документа: 0002434807
Дата охранного документа: 27.11.2011
29.03.2019
№219.016.f71b

Способ получения монокристалла нитрида тугоплавкого металла и изделия из него, получаемого этим способом

Изобретение предназначено для химической, электротехнической, радиоэлектронной промышленности, материаловедения и может быть использовано для получения различных изделий: проволоки, проволочной спирали, лент, тонкостенных трубок, лодочек для работы в агрессивных средах и/или для работы при...
Тип: Изобретение
Номер охранного документа: 0002431002
Дата охранного документа: 10.10.2011
Показаны записи 1-10 из 57.
20.02.2013
№216.012.26d5

Способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью

Разработан способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью, для использования в реконструктивно-пластической хирургии и стоматологии при замещении костных дефектов. Способ включает синтез цинк-, медь-, железо- или сереброзамещенного гидроксиапатита из...
Тип: Изобретение
Номер охранного документа: 0002475461
Дата охранного документа: 20.02.2013
20.05.2013
№216.012.3f9f

Способ изготовления пористых керамических изделий из β-трикальцийфосфата для медицинского применения

Изобретение относится к получению пористых β-трикальцийфосфатных керамических изделий, предназначенных для применения в качестве костных имплантатов. Заявленный способ изготовления заключается в проведении следующих стадий: предварительная термообработка гипсовых заготовок в течение 2,0-2,5...
Тип: Изобретение
Номер охранного документа: 0002481857
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.6f09

Способ упрочнения пористой кальцийфосфатной керамики

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения...
Тип: Изобретение
Номер охранного документа: 0002494076
Дата охранного документа: 27.09.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
20.07.2014
№216.012.dd7d

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели по пористости и прочности при невысокой теплопроводности (теплоизоляция, фильтры для очистки жидких и газовых сред,...
Тип: Изобретение
Номер охранного документа: 0002522487
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e143

Способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях

Изобретение относится к способу получения шихты для композиционного материала на основе карбоната кальция - гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях. Заявленный способ включает получение шихты для спекания...
Тип: Изобретение
Номер охранного документа: 0002523453
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
20.02.2015
№216.013.2ae6

Способ получения пористого керамического матрикса на основе карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов...
Тип: Изобретение
Номер охранного документа: 0002542439
Дата охранного документа: 20.02.2015
+ добавить свой РИД