×
09.06.2019
219.017.7d1f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКИСЛОВ УРАНА ИЗ ТЕТРАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для конверсии тетрафторида обедненного урана. Тетрафторид урана в противоточном режиме контактирует с простым эфиром со строением RO, где R - Н, СН, CH, СН, СН, при температурах 450-550°С в течение 15-120 мин при мольном соотношении UF/эфир от 1÷2,64 до 1÷25,08. Изобретение позволяет получать оксиды урана, не загрязненные фтором. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области разработки экономически рентабельной и экологически безопасной технологии конверсии тетрафторида обедненного урана, полученного тем или иным способом, в частности, в окислы урана, предназначенные для длительного хранения или использования в реакторах на быстрых нейтронах, и алкилфториды, используемые в дальнейшем в качестве озонобезопасных хладоагентов, растворителей, пожаротушащих веществ или средств травления полупроводниковых плат.

Возможна таким же образом конверсия природного или обогащенного тетрафторида урана в окислы, используемые в дальнейшем для получения двуокиси урана керамического сорта для приготовления ядерного топлива.

Известен метод получения оксидов урана и нерадиоактивных фторсодержащих соединений из UF4 и твердых оксидов следующих элементов: Р, Ge, As, Tl, Sb, Ti, Zr, W и Nb, при их смешении в стехиометрических количествах и температуре 400-1000°С [US Patent 5918106, МПК С01В 9/00, C01G 43/01].

Известен также метод получения тетрафторида кремния из тетрафторида урана, где продуктом, содержащим уран, является двуокись урана [US Patent 5888468, data of patent: Mar. 30, 1999, Int. Cl.6 С01В 33/08; C01G 43/01]. Взаимодействие происходит при стехиометрическом соотношении компонентов и температуре 400-750°С.

Наиболее близким является способ конверсии тетрафторида урана в пламени кислорода и водорода или углеводородов - ацетилена или пропана (Орехов В.Т., Рыбаков А.Г. и др. Патент России №2027674 с приоритетом от 28.07.1992 г.).

Реагенты предварительно подогревают до 450-550°С. В пламени образуется пароводяная газовая смесь, которая при реакции с UF4 приводит к образованию двуокиси урана с остаточным содержанием фтора 0,07-0,5% и 80-90%-ного фтороводорода. Температура в пламени достигает 1200°С.

К недостаткам этого способа следует отнести:

- необходимость оснащения реактора горелкой и организации устойчивого факела пламени;

- необходимость диспергирования UF4 и обеспечение его необходимого контакта с пламенем;

- отсутствие возможности использования каких-либо насадок внутри реактора, так как это резко снижает температуру пламени и даже меняет характер горения;

- высокая температура (до 700°С) отходящих реагентов, что вследствие наличия HF приводит к существенной коррозии конструкционных материалов.

Настоящее изобретение основано на следующих соображениях.

Рассматривается гомологический ряд простых эфиров, являющихся основаниями Льюиса по отношению к UF4. Молекулы простых эфиров имеют строение R2O, где R=СН3, С2Н5, С3Н7, С4Н9, которое сходно со строением молекулы воды Н-О-Н.

Известно, что при взаимодействии тетрафторида урана с водой в интервале температур 20-850°С образуются уранилфторид и фтороводород [Федерер Д. Атомная техника за рубежом, 1969, №9, с.18-22]:

UF4+2H2O→UO2F2+4HF.

Наличие алкильных радикалов в молекулах простых эфиров резко меняет их свойства по сравнению с водой за счет смещения электронной плотности в область ятома кислорода, то есть их основность и реакционная способность по отношению к UF4 будут выше.

Таким образом, простые эфиры способны к более глубокому взаимодействию с UF4, чем вода в тех же условиях проведения процесса, в результате чего будут образовываться оксиды урана, не содержащие фтор, и фторированные производные углеводородов, которые являются озонобезопасными веществами второго поколения:

UF4+2R1-O-R2→UO2+4(R1,R2)F.

Эти соображения подтвердились на практике и позволили исключить те недостатки, которые были присущи прототипу.

Технический результат достигается тем, что тетрафторид урана контктирует с простым эфиром со строением R2O, где R - Н, СН3, C2H5, С3Н7, С4Н9, при температурах 450-550°С, в течение 15-120 мин, мольном соотношении UF4/эфир от 1÷2,64 до 1÷25,08. Простой эфир разбавляют аргоном.

Аппаратурное оформление процесса конверсии тетрафторида в оксиды представлено на чертеже. Установка включала узлы подачи и регулирования расхода аргона (баллон с аргоном (1) и регулятор расхода (7)) и простого эфира (контейнер с эфиром (2) и регулятор расхода (8)), реактор взаимодействия UF4 с простым эфиром (3), узел улавливания газовой фазы после реактора (пробоотборник (4), конденсатор (5) и дрексель (6)).

Реактор с помещенной в него лодочкой, которая содержит навеску тетрафторида урана, выводили на заданный температурный режим (450-550°С) и выдерживали в таких условиях в течение определенного времени (15-120 мин), при этом подавая в реактор простой эфир (расход ~4-10 л/ч), разбавленный аргоном.

Исходные реагенты и продукты реакции подвергались химическому, ИК-спектроскопическому и хроматографическому анализам.

В примерах 1-5 представлены данные по изучению взаимодействия тетрафторида урана с диметиловым эфиром (ДМЭ), в примере 6 описываются характер и результаты взаимодействия UF4 с диэтиловым эфиром (ДЭЭ), в примере 7 - с дибутиловым эфиром (ДБЭ), в примере 8 - с метил-трет-бутиловъш эфиром СН3-O-С-(СН3)3.

Пример 1. Время проведения опыта 2 часа, температура в зоне реагирования 550°С. Масса навески тетрафторида урана 4,0905 г, расход ДМЭ~7-10 л/ч, что при времени пропускания 2 часа составляет 15 г (мольное соотношение UF4:ДМЭ=1:25,08). Значительное превышение расхода ДМЭ над стехиометрией объясняется неподвижным состоянием лодочки с UF4 во время опыта.

Пример 2. Время проведения опыта 1 час, температура в зоне реагирования 550°С. Масса навески тетрафторида урана 4,0500 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 1 час составляет 7,5 г (мольное соотношение UF4:ДМЭ=1:12,64).

Пример 3. Время проведения опыта 0,5 часа (30 мин), температура в зоне реагирования 550°С. Масса навески тетрафторида урана 3,7205 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 0,5 часа составляет 4 г (мольное соотношение UF4:ДМЭ=1:7,34).

Пример 4. Время проведения опыта 0,25 часа (15 мин), температура в зоне реагирования 550°С. Масса навески тетрафторида урана 5,1650 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 0,25 часа составляет 2 г (мольное соотношение UF4:ДМЭ=1:2,64).

Во всех вышеприведенных примерах твердый продукт представлял собой смесь оксидов урана (диоксид, закись-окись, триоксид урана), основу которого составляла двуокись урана с различным кислородным коэффициентом UO2+x. Фтора в продукте обнаружено не было.

Предварительные хроматографические анализы органической фазы показали наличие фторированных производных метана. Количество их в продукте зависит от избытка подаваемого эфира.

Пример 5. Для определения возможности перевода тетрафторида в окислы урана при более низких температурах был проведен опыт при 450°С и времени контакта 1 час. Масса навески тетрафторида урана 4,1240 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 1 час составляет 7,5 г (мольное соотношение UF4:ДМЭ=1:12,41).

Твердые и газообразные продукты аналогичны полученным в предыдущих опытах.

Для получения возможности перенесения результатов опытов по взаимодействию тетрафторида урана с ДМЭ на другие члены гомологического ряда R1-O-R2 были проведены опыты с диэтиловым, дибутиловым и метил-трет-бутиловым эфирами (примеры 6, 7 и 8 соответственно).

Пример 6. Время проведения опыта 1 час, температура в зоне реагирования 500°С. Масса навески тетрафторида урана 4,5330 г, расход ДЭЭ ~4-6 л/ч, что при времени пропускания 1 час составляет 21,41 г (мольное соотношение UF4:ДЭЭ=1:20,04). Эфир предварительно подогревали до температуры 30°С, чтобы он перешел в газовую фазу.

Пример 7. Время проведения опыта 1 час, температура в зоне реагирования 500°С. Масса навески тетрафторида урана 4,8525 г, расход ДБЭ ~6-8 л/ч, что при времени пропускания 1 час составляет 26,06 г (мольное соотношение UF4:ДЭЭ=1:12,97). Эфир предварительно подогревали до температуры 160°С, чтобы он перешел в газовую фазу.

Пример 8. Время проведения опыта 1 час, температура в зоне реагирования 500°С. Масса навески тетрафторида урана 5,6372 г, расход метил-трет-бутилового эфира ~2-4 л/ч, что при времени пропускания 1 час составляет 11,44 г (мольное соотношение UF4:метил-трет-бутиловый эфир = 1:13,00). Эфир предварительно подогревали до температуры 80°С, чтобы он перешел в газовую фазу.

Как и в примерах 1-5, в опытах 6, 7 и 8 твердый продукт представлял собой смесь оксидов урана - диоксида, закиси-окиси и триоксида. Основой твердого продукта являлся диоксид урана коричневого цвета.

Фтора в составе твердого продукта не обнаружено.

Преимущества заявляемого метода:

1. Процесс получения оксидов урана с помощью простых эфиров происходит при относительно низких температурах - 450-550°С.

2. Отсутствие коррозионного воздействия на конструкционные материалы вследствие получения алкилфторидов вместо фтороводорода.

3. Получение оксидов урана, не содержащих фтора. Возможность получения алкилфторидов, используемых в дальнейшем в качестве озонобезопасных хладоагентов, растворителей, пожаротушащих веществ или средств травления полупроводниковых плат.

4. Проведение процесса не в режиме витания частиц №4 в факеле пламени, а просто в слое UF4 или во вращающемся реакторе.

С целью снижения расхода простых эфиров процесс следует осуществлять в противоточном режиме, как и в прототипе.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 601.
10.04.2013
№216.012.3538

Устройство для облучения изделий потоком атомов водорода с тепловыми скоростями

Заявленное изобретение относится к устройствам для генерации потоков атомов водорода с тепловыми скоростями для облучения изделий равномерным по плотности потоком с целью исследования процессов взаимодействия атомов водорода с материалами, а также для решения прикладных задач, в частности...
Тип: Изобретение
Номер охранного документа: 0002479167
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.399d

Способ получения открытопористого наноструктурного металла

Изобретение относится к порошковой металлургии, в частности к получению открытопористого наноструктурного металла. Готовят смесь на основе порошкообразного нитрата металла и жидкого органического соединения из группы гидроксисодержащих соединений в виде многоатомного спирта при следующем...
Тип: Изобретение
Номер охранного документа: 0002480310
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3de4

Способ переработки урановых руд

Изобретение относится к области переработки урансодержащего сырья и может быть использовано при гидрометаллургической переработке урановых руд. Способ переработки урановых руд включает дробление и измельчение руды, серно-кислотное выщелачивание с добавлением азотной кислоты в качестве...
Тип: Изобретение
Номер охранного документа: 0002481411
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e76

Способ навигации движущихся объектов

Изобретение относится к области навигации движущихся объектов (ДО) и может быть использовано при построении различных систем локации, предназначенных для уточнения местоположения любых ДО и управления их движением. Сущность: используют эталонную карту местности. Выбирают в ее пределах реперный...
Тип: Изобретение
Номер охранного документа: 0002481557
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ea5

Устройство для ограничения интенсивности лазерного излучения

Изобретение относится к области оптической техники, а именно к ограничителям мощности приемников лазерного излучения, и может найти применение для защиты глаз, оптических систем и приемников лазерного излучения от разрушающего действия входного излучения высокой мощности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002481604
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3eb4

Устройство резервирования

Изобретение относится к вычислительной технике и может быть использовано при построении надежных вычислительно-управляющих систем. Технический результат заключается в расширении функциональных возможностей, упрощении и повышении надежности устройства резервирования. Такой результат достигается...
Тип: Изобретение
Номер охранного документа: 0002481619
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4806

Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита

Изобретение относится к способам выделения дезактивированных редкоземельных элементов (РЗЭ) при азотно-кислотной переработке апатитового концентрата из азотно-фосфорнокислых растворов. Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002484018
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4a15

Система для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора

Изобретение относится к области управляемого ядерного синтеза и может быть применено в системах для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора. Заявленное устройство состоит из замкнутого контура пневматической...
Тип: Изобретение
Номер охранного документа: 0002484545
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c0b

Способ извлечения скандия

Изобретение относится к гидрометаллургической переработке минерального сырья, в частности к скандийсодержащим «хвостам», полученным при обогащении титаномагнетитовых руд методом мокрой магнитной сепарации. Способ извлечения скандия представляет собой трехстадийное сернокислотное выщелачивание...
Тип: Изобретение
Номер охранного документа: 0002485049
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c7e

Способ предотвращения воспламенения, горения и взрыва водородовоздушных смесей

Изобретение относится к обеспечению пожарной безопасности и взрывобезопасности, может быть использовано при получении, хранении, транспортировке водорода, в производствах, связанных с образованием водорода в качестве основного и/или побочного продукта. Способ предотвращения воспламенения,...
Тип: Изобретение
Номер охранного документа: 0002485164
Дата охранного документа: 20.06.2013
Показаны записи 1-4 из 4.
10.08.2016
№216.015.52ba

Способ испарения гексафторида урана из баллона

Изобретение относится к переработке гексафторида урана (ГФУ) и может быть использовано для извлечения гексафторида урана из баллонов различной вместимости. Способ испарения гексафторида урана из баллона, включающий нагрев баллона двухсекционным индуктором, подачу азота в баллон в импульсном...
Тип: Изобретение
Номер охранного документа: 0002594009
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52be

Способ конверсии гексафторида урана до тетрафторида урана и безводного фторида водорода

Изобретение относится к области разработки технологии конверсии обедненного гексафторида урана с получением тетрафторида урана и, далее, металлического урана для военных целей или оксидов урана для длительного хранения или использования в быстрых реакторах, а также безводного HF. Способ...
Тип: Изобретение
Номер охранного документа: 0002594012
Дата охранного документа: 10.08.2016
29.12.2017
№217.015.fd14

Способ получения гексафторида урана

Изобретение относится к производствам атомной промышленности, в частности к процессу выделения гексафторида урана из газов после фторирования урансодержащих соединений на сублиматных заводах. Способ получения гексафторида урана включает охлаждение полых металлических цилиндров, путем подачи...
Тип: Изобретение
Номер охранного документа: 0002638215
Дата охранного документа: 12.12.2017
19.04.2019
№219.017.3184

Способ очистки тетрафторида кремния от примеси летучих фторидов фосфора

Изобретение может быть использовано в производстве поликристаллического кремния. Осуществляют совместную сорбцию тетрафторида кремния и летучих фторидов фосфора на фториде натрия при температуре 200-250°С. Вводят водяной пар при температуре 450-550°С, десорбируют и конденсируют очищенный...
Тип: Изобретение
Номер охранного документа: 0002422359
Дата охранного документа: 27.06.2011
+ добавить свой РИД