×
09.06.2019
219.017.7cad

Результат интеллектуальной деятельности: СПОСОБ РЕГУЛИРОВАНИЯ ПАРАМЕТРОВ КАТОДНОЙ ЗАЩИТЫ УЧАСТКОВ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков подземных трубопроводов. Способ включает снятие катодной поляризационной кривой, подбор и поддержание выбранного потенциала катодной защиты, при этом подбор потенциала катодной защиты осуществляют по градиенту логарифма тока по потенциалу, значение потенциала катодной защиты поддерживают на 0,03-0,06 В меньше по модулю, чем то, при котором происходит изменение градиента логарифма тока по потенциалу. Технический результат - повышение степени защиты участка газопровода. 2 ил.

Изобретение относится к области защиты подземных сооружений от коррозии и может быть использовано в процессе регулирования параметров катодной защиты участков подземных трубопроводов различного назначения.

Известна автоматическая катодная установка, при осуществлении работы которой реализуется способ автоматического поддерживания защитного потенциала участков газопроводов, подверженных коррозионным воздействиям [см. Авт. свид. SU №146628, кл. 48d.6, опубл. 1962 г.].

Недостатком этого способа является то, что значение защитного потенциала задается произвольно в пределах, нормируемых ГОСТ Р 51164-98, и не зависит от изменяющихся параметров коррозионных процессов.

Известен способ определения степени защищенности подземных магистральных трубопроводов, заключающийся в определении градиента потенциалов при инфранизкочастотном диапазоне тока катодной защиты [см. Авт. свид. SU №998584, кл. C23F 13/00, опубл. 23.02.1983 г.].

Недостатком является необходимость физического нахождения дефектов изоляции на трассе МГ, длительность процессов измерений, неопределенность влияния дефектов изоляции покрытия на коррозионные процессы, особенно при катодной защите трубопровода, и отсутствие возможности определения потенциала катодной защиты.

Известна импульсная катодная станция, основанная на способе автоматического изменения параметров защищаемой цепи (частоты защитного тока) при изменении резонансной частоты защищаемой цепи [см. Авт. свид. SU №1090758, кл. C23F 13/00, опубл. 07.05.1984 г.].

Недостатком указанного технического решения является то, что резонансная частота защищаемой цепи может быть нарушена не только коррозионными, но и другими, в частности, тепловыми процессами.

Известен способ определения степени катодной защиты металла от коррозии, сущность которого заключается в снятии кривой катодной поляризации и определении поляризационного сопротивления и поляризуемости при двух потенциалах [см. Авт. свид. SU №1595943, кл. C23F 13/00, опубл. 30.09.1990 г.]. Указанный способ является наиболее близким аналогом для заявляемого нами технического решения и взят нами в качестве прототипа.

Недостатком данного способа является то, что после снятия поляризационных кривых, определяются значения параметров поляризационных сопротивлений, которые могут изменяться в широких пределах. Недостаток заключается также в сложности точного определения предельного диффузионного тока, а также в отсутствии возможности регулирования потенциала катодной защиты.

Задачей предлагаемого технического решения является повышение степени защиты участка трубопровода.

Поставленная задача в способе регулирования параметров катодной защиты участков подземных трубопроводов, включающем снятие кривой катодной поляризации, подбор и поддержание выбранного потенциала катодной защиты, решается тем, что подбор потенциала катодной защиты осуществляют по градиенту логарифма тока по потенциалу, а значение потенциала катодной защиты поддерживают на 0,03-0,06 В меньше по модулю, чем то, при котором происходит изменение градиента логарифма тока по потенциалу.

Существенными отличительными признаками заявленного нами технического решения являются:

- подбор потенциала катодной защиты осуществляют по градиенту логарифма тока по потенциалу;

- значение потенциала катодной защиты поддерживают на 0,03-0,06 В меньше по модулю, чем то, при котором происходит изменение градиента логарифма тока по потенциалу.

Вышеприведенные существенные отличительные признаки нам были неизвестны из общедоступных источников патентной и научно-технической информации, поэтому мы считаем, что заявленное нами техническое решение соответствуют условию патентоспособности «Новизна».

Приведенные выше существенные отличительные признаки для специалиста в данной области явным образом не следуют из уровня техники, поэтому мы считаем, что заявленное нами техническое решение соответствуют условию патентоспособности «Изобретательский уровень».

Заявленный нами способ успешно прошел лабораторные испытания, а также испытания в трассовых условиях на установках катодной защиты ЛПУМГ КС-10 ООО «Севергазпром», и мы можем утверждать, что описываемое техническое решение соответствует условию патентоспособности «Промышленная применимость».

Указанная выше совокупность условий патентоспособности заявленного нами технического решения позволяет идентифицировать его как изобретение.

Сущность заявленного изобретения поясняется графическими материалами, где на фиг.1 показан вид катодной поляризационной кривой в полулогарифмических координатах, а на фиг.2 - блок-схема автоматизированной системы управления защитным потенциалом трубопроводов.

Регулирование параметров катодной защиты, предлагаемым способом осуществляют следующим образом.

Снимают катодную часть поляризационной кривой (вольт-амперную характеристику) (фиг.1), которая состоит из двух участков, кривой восстановления кислорода «Зона а» и кривой восстановления воды «Зона b». Эти участки имеют различные углы наклона, т.е. различные значения градиента логарифма тока по потенциалу. Идентифицируют точку перехода одного отрезка в другой Uкр и задают значение потенциала ниже определенного на 0,03-0,06 В. Эти значения обусловлены следующим, на первом отрезке происходит восстановление адсорбированного кислорода, а на втором - восстановление воды с выделением водорода. В точке перехода Uкр скорости этих процессов сравниваются. При изменении потенциала на 0,03 В скорость процессов изменяется в 10 раз, поэтому при уменьшении значения потенциала катодной защиты на 0,03 В скорость процесса восстановления воды уменьшается в 10 раз, соответственно при значениях на 0,06 В меньше скорость еще уменьшается в 10 раз. Т.е. при потенциалах катодной защиты на 0,03-0,06 В меньше по модулю переходного потенциала Uкр скорость процесса восстановления воды (выделения водорода) становится несравнимой (меньше в 10-100 раз) со скоростью восстановления адсорбированного кислорода.

Пример.

Известно, что увеличение потенциала катодной защиты сопровождается ростом тока защиты. При этом вольт-амперная характеристика имеет, как установлено опытным путем, линейный вид в полулогарифмических координатах с характерным изломом при потенциале, равном Uкр, физически соответствующем переходу процесса восстановления кислорода в присутствии воды в процесс восстановления воды с выделением водорода.

Управление изменением потенциала защиты осуществляют на основе измерения скорости изменения (производной) логарифма тока катодной защиты по напряжению. «Зона а» (фиг.1) характеризуется скоростью изменения тока защиты Va, который определяют по формуле

,

где Δlg(Ia) - изменение логарифма тока катодной защиты в «Зоне а» вольт-амперной характеристики;

ΔU - изменение потенциала катодной защиты.

«Зона b» (фиг.1) характеризуется скоростью изменения тока защиты Vb, которую определяют по формуле

,

где Δlg(Ib) - изменение логарифма тока катодной защиты в «Зоне b» поляризационной кривой.

Скорости изменения тока Va и Vb определяют с помощью управляющего программного обеспечения, установленного на компьютерной станции слежения (КСС), которая обеспечивает:

- периодический (программно-установленный) контроль токов и напряжений катодной защиты нефтегазопровода;

- определение (расчет) скорости изменения логарифма тока от напряжения;

- определение, автоматическую установку и поддержание оптимального (критического) значения напряжения защиты Uкр.

Для реализации способа на фиг.2 представлена схема автоматизированного контроля и управления электрическими параметрами защиты нефтегазопроводов, где: СКЗ - станция катодной защиты; КСС - компьютерная станция слежения; V - вольтметр для измерения напряжения на выходе СКЗ; А - амперметр для измерения тока катодной защиты; ЭС - электрод сравнения; ТР - защищаемый трубопровод; 1 - линия управления током и напряжением СКЗ; 2 - линия контроля тока защиты; 3 - линия контроля потенциала защиты. Основным управляющим элементом является КСС, по команде которой производят периодический (1 раз в месяц, 1 раз в неделю, ежедневно или по команде оператора) опрос электрических параметров катодной защиты (линия 3). При этом по сигналу с КСС на выходе СКЗ устанавливают наименьшее напряжение защиты, далее осуществляют плавное повышение напряжения катодной защиты с шагом 0,03 В (линия 1), на каждом шаге повышения напряжения осуществляют измерение и запись в память КСС значений тока, его логарифма и потенциала катодной защиты непосредственно на защищаемом участке ТР (линия 2 и 3), повышение напряжения на СКЗ происходит до максимального значения напряжения катодной защиты. После чего на основании компьютерного анализа полученных данных (логарифма тока и потенциала катодной защиты) определяют значение Uкр, и по команде с КСС устанавливают значение напряжения на 0,03-0,06 В меньше по модулю этого значения.

Таким образом, при данных значениях потенциалов не происходит выделения водорода, что повышает устойчивость полимерного или иного покрытия труб, периодическое определение критической точки дает возможность поддерживать такие значения потенциалов, которые соответствуют коррозионным процессам, происходящим в данный период времени, что повышает степень защищенности трубопровода.

Способрегулированияпараметровкатоднойзащитыподземныхтрубопроводов,включающийснятиекатоднойполяризационнойкривой,подбориподдержаниевыбранногопотенциалакатоднойзащиты,отличающийсятем,чтоподборпотенциалакатоднойзащитыосуществляютпоградиентулогарифматокапопотенциалу,приэтомзначениепотенциалакатоднойзащитыподдерживаютна0,03-0,06Вменьшепомодулю,чемзначение,прикоторомпроисходитизменениеградиенталогарифматокапопотенциалу.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 124.
20.04.2015
№216.013.4283

Способ сжигания предварительно подготовленной "бедной" топливовоздушной смеси в двухконтурной малоэмиссионной горелке с применением диффузионного стабилизирующего факела

Изобретение относится к области машиностроения, энергетики, транспорта и к другим областям, где имеют место процессы смешения различных жидкостей и газов, в том числе процессы смесеобразования различных топлив с воздухом и сжигания «бедной» топливовоздушной смеси. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002548525
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4410

Установка для калибровки скважинных термометров-манометров

Изобретение предназначено для калибровки скважинных приборов, применяемых при контроле разработок газовых месторождений и при эксплуатации подземных хранилищ газа. Установка для калибровки скважинных термометров-манометров содержит термокамеру, управляемый нагреватель, размещенный в полости...
Тип: Изобретение
Номер охранного документа: 0002548922
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.48df

Установка для калибровки скважинных газовых расходомеров

Изобретение предназначено для калибровки скважинных приборов, применяемых для контроля над разработкой газовых месторождений и эксплуатацией подземных хранилищ газа. В установке для калибровки газовых расходомеров магистраль выполнена U-образной формы, в нижней части которой расположен...
Тип: Изобретение
Номер охранного документа: 0002550162
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5a6b

Установка для калибровки скважинных жидкостных расходомеров

Изобретение относится к измерительной технике и может быть использовано при метрологическом обеспечении скважинной геофизической аппаратуры, в качестве образцового средства измерения при градуировке и калибровке скважинных жидкостных расходомеров. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002554688
Дата охранного документа: 27.06.2015
27.07.2015
№216.013.65d0

Сорбент для очистки и обезвреживания от нефтезагрязнений

Изобретение относится к охране окружающей среды и может быть использовано для очистки и обезвреживания нефтезагрязненных отходов. Предложен сорбент, содержащий негашеную известь в количестве 81,1-83,3%, диатомит в количестве 7,4-12,5% и гидрофобизатор. В качестве гидрофобизатора сорбент...
Тип: Изобретение
Номер охранного документа: 0002557617
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6c0c

Способ прокладки газонефтепровода

Изобретение относится к нефтегазовой промышленности и может быть использовано при проведении строительных и ремонтных работ на газонефтепроводах. В способе прокладки газонефтепровода осуществляют укладку изолированного газонефтепровода в траншею на слой подготовки, обработанный модификатором,...
Тип: Изобретение
Номер охранного документа: 0002559218
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c10

Способ прокладки трубопровода

Изобретение относится к строительству трубопроводов, в частности в нефтегазовой промышленности, и может быть использовано при проведении строительных и ремонтных работ на газонефтепроводах. В способе прокладки трубопровода осуществляют укладку изолированного трубопровода в траншею на слой...
Тип: Изобретение
Номер охранного документа: 0002559222
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.75d5

Кольцевая камера сгорания газотурбинного двигателя и способ её эксплуатации

Кольцевая камера сгорания газотурбинного двигателя содержит группу горелок, расположенных в одной плоскости на передней стенке камеры сгорания, по меньшей мере, двумя соосными кольцами. В пределах каждого кольца установлено одинаковое и четное число малоэмиссионных горелок. Горелки внутреннего...
Тип: Изобретение
Номер охранного документа: 0002561754
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
20.02.2019
№219.016.be2b

Устройство для контроля и регулирования процесса добычи газа в газовых и/или газоконденсатных скважинах

Изобретение относится к управлению расходом газообразных и жидких веществ с помощью элементов, чувствительных к давлению среды, и может быть использовано на газодобывающих промыслах, оборудованных ингибиторопроводом от установки комплексной подготовки газа до куста скважин при освоении газовых...
Тип: Изобретение
Номер охранного документа: 0002340771
Дата охранного документа: 10.12.2008
Показаны записи 11-12 из 12.
29.05.2019
№219.017.6713

Способ изготовления контрольного образца для дефектоскопии трубопроводов

Изобретение относится к дефектоскопии подземных трубопроводов и может быть использовано для изготовления контрольного образца с трещиной коррозионного растрескивания под напряжением. Способ изготовления контрольного образца для дефектоскопии трубопроводов включает вырезку образца и нагружение...
Тип: Изобретение
Номер охранного документа: 0002364850
Дата охранного документа: 20.08.2009
10.07.2019
№219.017.adb8

Способ определения содержания углеводородов в керне

Изобретение относится к аналитической химии применительно к решению ряда прикладных геологических задач, включая выполнение геолого-поисковых работ на нефть и газ. Способ включает в себя измельчение керна до размера зерен 0,25-0,5 мм, пятикратную экстракцию углеводородных соединений с помощью...
Тип: Изобретение
Номер охранного документа: 0002377564
Дата охранного документа: 27.12.2009
+ добавить свой РИД