×
09.06.2019
219.017.7c0c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АСИММЕТРИИ ДВИЖУЩЕЙСЯ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники, а именно к измерению параметров движущихся поверхностей. Инициируют заряд взрывчатого вещества с помощью линзы или детонационного распределителя по поверхности, которую разгоняют продукты взрыва до скорости, вызывающей свечение ударной волны перед ней. На пути движения устанавливают приемник той же формы, закрытый экраном. В приемнике по нормали к движущейся поверхности устанавливают две или более группы электрооптических датчиков на разных базах от исходного положения поверхности. Поверхность экрана, обращенная к электрооптическим датчикам, при движении взаимодействует с их торцами, при этом происходит одновременное формирование электрических и световых сигналов, которые поступают на регистраторы. Регистраторы измеряют время подлета движущейся поверхности к торцу каждого датчика. Разновременность определяют по разности времен электрических и световых сигналов в каждой группе датчиков. Изобретение позволяет повысить надежность и достоверность измерений интервалов времени в сложных, дорогостоящих экспериментах. 4 ил.

Изобретение относится к области измерительной техники, а именно к измерению параметров движущихся поверхностей.

При оценке симметрии и динамики движения поверхностей традиционно применяется метод измерения, основанный на использовании контактных датчиков, формирующих при подлете исследуемой поверхности электрические сигналы.

В сфере газодинамических исследований при проведении особо ответственных и сложных взрывных экспериментов выставляется требование о проведении измерений интервалов времени, как минимум, двумя независимыми методиками, основанными на разных физических принципах.

Наиболее близким по технической сущности к заявляемому способу является способ определения скорости движущейся алюминиевой пластины радиоинтерферометрическим способом и с помощью четырех групп контактных датчиков (КД), которые устанавливают на разных заданных базах от исходного положения поверхности, при этом каждый датчик в группах устанавливают по нормали к движущейся поверхности и с возможностью взаимодействия с ней, измеряют время подлета движущейся поверхности и ее разновременность в момент взаимодействия с каждым из датчиков по электрическим сигналам (см. доклад "О влиянии ударно-сжатого слоя перед метаемой пластиной на измерения ее скорости радиоинтерферометрическим методом", авторы: Е.Н.Богданов, В.М.Вельский, А.В.Родионов, сборник тезисов докладов международной конференции «IX Харитоновские тематические научные чтения», 12-16 марта 2007 года, - Саров: ФГУП РФЯЦ-ВНИИЭФ, 2007, - 375 с). Вышеуказанный способ принят в качестве прототипа.

Недостатками способа являются ограниченные функциональные возможности, которые не позволяют дублировать измерения асимметрии и динамики движущихся сферических, цилиндрических, параболических или других сложных форм поверхностей.

Решаемой задачей является создание способа определения скорости и асимметрии движущейся поверхности с расширенными функциональными возможностями за счет применения двух независимых методик: контактной и волоконно-оптической.

Техническим результатом изобретения является повышение надежности и достоверности измерений интервалов времени при проведении сложных и дорогостоящих газодинамических экспериментов.

Технический результат достигается в способе определения скорости и асимметрии движущейся поверхности, основанном на использовании, по крайней мере, двух групп датчиков, каждую из которых устанавливают на разных заданных базах от исходного положения поверхности, при этом каждый датчик в группах устанавливают по нормали к движущейся поверхности и с возможностью взаимодействия с ней, измеряют время подлета движущейся поверхности и ее разновременность в момент взаимодействия с каждым из датчиков по электрическим сигналам, в котором новым является то, что разгоняют поверхность до скорости, вызывающей свечение воздуха в ударной волне при взаимодействии с датчиками, в качестве датчиков используют электрооптические датчики для одновременного формирования электрических и световых сигналов в моменты взаимодействия их с движущейся поверхностью, одновременно с электрическими сигналами дополнительно регистрируют и световые сигналы, каждые из которых используют для измерения времени взаимодействия поверхности с электрооптическими датчиками, а разновременность подлета движущейся поверхности определяют по разности времен в каждой группе датчиков по электрическим и световым сигналам.

Использование в заявляемом способе электрооптических датчиков (ЭОД) позволяет одновременно формировать электрические и световые сигналы в моменты взаимодействия их с движущейся поверхностью, в результате чего появилась возможность определения скорости и асимметрии движущейся поверхности двумя независимыми методиками, основанными на разных физических принципах.

На фиг.1 представлено устройство, реализующее заявляемый способ; на фиг.2 - конструкция электрооптического датчика; на фиг.3 - осциллограммы, полученные в эксперименте; на фиг.4 - времена срабатывания ЭОД и КД, полученные независимыми методиками: контактной, волоконно-оптической.

Устройство для реализации способа содержит: электродетонатор 1, линзу ВВ 2, шашку ВВ 3, стальную пластину 4, экран 5, приемник 6, электрооптические датчики 7.

Способ реализуется следующим образом.

Заряд ВВ инициируется с помощью линзы 2 или детонационного распределителя по плоской, сферической или иной поверхности. Продукты взрыва разгоняют пластину 4 или оболочку соответствующей формы, на пути движения которой устанавливают приемник 6 той же формы, закрытый экраном 5. В приемнике 6 по нормали к движущейся поверхности устанавливают две или более группы электрооптических датчиков 7 на разных базах от исходного положения поверхности. Поверхность экрана 5, обращенная к электрооптическим датчикам 7, при движении взаимодействует с их торцами, при этом происходит одновременное формирование электрических и световых сигналов, которые поступают на регистраторы. Регистраторы измеряют время подлета движущейся поверхности к торцу каждого датчика. Разновременность определяют по разности времен электрических и световых сигналов в каждой группе датчиков.

Проверка способа осуществлена в эксперименте с помощью устройства, представленного на фиг.1. Линзу ВВ 2 инициировали электродетонатором 1. Линза создавала в шашке ВВ 3 из ТГ 5/5 плоскую детонационную волну. Продукты взрыва ускоряли стальную пластину 4, которая ударяла по экрану 5. Под экраном 5 устанавливали приемник 6 с электрооптическими (ЭОД) и контактными датчиками (КД) 7. Поскольку скорость пластины была известна до проведения опыта, была установлена одна группа ЭОД и две группы КД.

В опыте использовали электрооптические датчики, конструкция которых приведена на фиг.2. Датчик изготавливали из никелевой трубки 8 ⌀0,35 мм, в которую вклеивали с помощью эпоксидного клея оптическое волокно 9 типа ММ50/125/250.

К трубке подпаивали медную проволоку 10 диаметром 0,2 мм, на которую в опыте подавали напряжение 150 В, торец датчика полировали. Датчики устанавливали в отверстия приемника 6 и фиксировали эпоксидным клеем.

Световые и электрические сигналы с четырех ЭОД регистрировали осциллографами с частотой дискретизации 1 нс и полосой пропускания 500 МГц. Световые сигналы с остальных 20 ЭОД регистрировали измерительным комплексом с оптическими входами, а электрические сигналы с них - параллельно измерительным комплексом с оптическими входами (ИКО) и измерительным комплексом с электрическими входами (ИКЭ). Электрические сигналы с 12-ти КД регистрировали ИКЭ.

Запуск регистрирующей аппаратуры осуществляли одновременно с запуском подрывной установки. Высоковольтный импульс подрывной установки по кабелю подавали на электродетонатор 1 (ЭД) экспериментальной сборки. На конце второго кабеля той же длины, подключенного к подрывной установке, устанавливали искровой разрядник, в котором напротив искрового зазора размещали дополнительно два оптических датчика. Световой импульс "0" с первого оптического датчика по оптической линии из полимерного оптического волокна POF ⌀1 мм длиной 24 м поступал на ИКО. Световой импульс со второго оптического датчика по аналогичной оптической линии поступал на скоростной аналоговый оптоэлектронный преобразователь (АОЭП). Электрический сигнал с АОЭП амплитудой 1,7 В и длительностью фронта ~10 нс подавали в качестве нулевого сигнала "0" на все осциллографы и ИКЭ. Электрические эквиваленты оптических "0" импульсов с первого оптического датчика опережали световой сигнал от второго оптического датчика, регистрируемого ИКО на 15 нс. Этот сдвиг был учтен при обработке результатов.

Световые импульсы, генерируемые в воздушном зазоре перед ЭОД, передавали по линиям из оптического кабеля типа ОК-50 на оптические входы ИКО. Электрические сигналы с ЭОД и КД поступали на регистраторы по трем 25-канальным измерительным линиям из кабеля типа РК50-2-11 длиной 55÷56 м.

В опыте зарегистрирована информация с 24 электрооптических и 12 контактных датчиков. Диаграммы мощности световых сигналов с четырех ЭОД и электрические сигналы с них, зафиксированные в опыте, приведены на фиг.3. Время отсчитывали от нулевого сигнала "0", который заводили на первые каналы всех осциллографов.

Времена срабатывания ЭОД и КД всеми регистрирующими приборами приведены на фиг.4.

Среднее время срабатывания контактных ЭОД, зарегистрированное ИКО, составляет 35,8 мкс (разновременность Δt-0,25 мкс), то же - зарегистрированное ИКЭ, составляет 35,88 мкс (разновременность - 0,21 мкс). Несовпадение полученных результатов можно объяснить разными порогами срабатывания измерительных каналов комплексов, каналы ИКО более чувствительные.

Среднее время срабатывания первой группы КД, состоящей из двух датчиков, установленных на другой базе, составляет 35,6 мкс. Среднее время срабатывания второй группы из 10 КД, зарегистрированное ИКЭ, составляет 35,87 мкс (Δt-0,07 мкс). Среднее время срабатывания 24 ЭОД и 10 КД, установленных на одной базе, практически совпадает. Скорость движения пластины, определенная по временам срабатывания КД, составила 3 км/с.

Среднее время срабатывания оптических и контактных ЭОД, зарегистрированное осциллографами, совпало и составило tcp=35,74 мкс (Δt-0,09 мкс). Это время отличается от tcp, зарегистрированного ИКЭ, на 0,14 мкс и на 0,06 мкс от tcp, зарегистрированного ИКО.

Среднее время срабатывания оптических ЭОД, зарегистрированное ИКО, составляет 35,63 мкс (Δt-0,2 мкс), это время отличается от tcp, зарегистрированного осциллографами, на Δt=0,13 мкс в сторону опережения. Это связано с наличием пологой части фронта световых импульсов, которая привела к более раннему срабатыванию каналов ИКО (порог срабатывания каналов - 5…10 мкВт).

Среднее время движения пластины, зарегистрированное ИКО оптической частью ЭОД, на ~0,14 мкс меньше среднего времени, зарегистрированного на обоих комплексах с контактной части ЭОД. Это связано с наличием пьедестала на фронте световых сигналов.

По сравнению с прототипом данный способ позволяет проводить измерения динамики и асимметрии движения поверхностей двумя независимыми методиками, основанными на разных физических принципах, что позволяет повысить надежность и достоверность измерений интервалов времени в сложных, дорогостоящих экспериментах.

Способ определения асимметрии движущейся поверхности, основанный на использовании, по крайней мере, двух групп датчиков, каждую из которых устанавливают на разных заданных базах от исходного положения поверхности, при этом каждый датчик в группах устанавливают по нормали к движущейся поверхности и с возможностью взаимодействия с ней, измеряют время подлета движущейся поверхности и ее разновременность в момент взаимодействия с каждым из датчиков по электрическим сигналам, отличающийся тем, что разгоняют поверхность до скорости, вызывающей свечение ударной волны перед ней при взаимодействии с датчиками, в качестве датчиков используют электрооптические датчики для одновременного формирования электрических и световых сигналов в моменты взаимодействия их с движущейся поверхностью, одновременно с электрическими сигналами дополнительно регистрируют и световые сигналы, каждые из которых используют для измерения времени взаимодействия поверхности с электрооптическими датчиками, а разновременность подлета движущейся поверхности определяют по разности времен в каждой группе датчиков по электрическим и световым сигналам.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 33.
29.05.2019
№219.017.66bc

Устройство для юстировки оптических элементов

Изобретение относится к области оптико-механического приборостроения и может быть использовано для прецизионной юстировки зеркал оптических резонаторов оптических квантовых генераторов. Изобретение направлено на создание надежного юстировочного устройства, обеспечивающего прецизионную юстировку...
Тип: Изобретение
Номер охранного документа: 0002336545
Дата охранного документа: 20.10.2008
29.05.2019
№219.017.675a

Способ получения пористого наноструктурного никеля

Изобретение относится к порошковой металлургии, в частности к получению пористого никеля, и может использоваться при изготовлении воздушных и жидкостных фильтров, основы нейтрализаторов, электродов, составных элементов катализаторов и носителей катализаторов. Из порошков с фенолформальдегидной...
Тип: Изобретение
Номер охранного документа: 0002320456
Дата охранного документа: 27.03.2008
09.06.2019
№219.017.794b

Способ изготовления защитного слоистого экрана (варианты)

Изобретение относится к способам изготовления защитных слоистых экранов. Способ включает формирование пакета из слоев, один из которых выполнен из порошкообразного материала на основе карбида бора, а другие - на основе карбида и нитрида бора дисперсностью 5-10 мкм, с градиентом относительного...
Тип: Изобретение
Номер охранного документа: 0002343044
Дата охранного документа: 10.01.2009
09.06.2019
№219.017.7bee

Устройство для инициирования

Устройство предназначено для использования в пиротехнике, в конструкциях воспламенителей для инициирования горения различных веществ в герметичном объеме. Сущность изобретения заключается в соосном расположении разогревающего и воспламенительного зарядов из пиротехнических составов, разделенных...
Тип: Изобретение
Номер охранного документа: 0002367887
Дата охранного документа: 20.09.2009
09.06.2019
№219.017.7c02

Трехкоординатный прецизионный столик (варианты)

Изобретение относится к средствам юстировки оптических элементов и направлено на уменьшение габаритов и повышение жесткости конструкции, на повышение чувствительности и точности подвижек, упрощение технологии изготовления и сборки, что обеспечивается за счет того, что трехкоординатный...
Тип: Изобретение
Номер охранного документа: 0002368021
Дата охранного документа: 20.09.2009
19.06.2019
№219.017.8491

Контейнер для взрывоопасных грузов

Область применения: безопасная перевозка, хранение и обслуживание экологически и взрывоопасных грузов. Сущность изобретения: камера для размещения груза прикреплена к корпусу контейнера. Вокруг камеры размещена теплозащита, помещенная внутри ударопоглощающей защиты. Теплозащита выполнена...
Тип: Изобретение
Номер охранного документа: 0002282822
Дата охранного документа: 27.08.2006
19.06.2019
№219.017.8494

Устройство для определения температуры разложения вещества

Изобретение относится к технике оптических измерений. Устройство содержит термостатирующий блок, датчики контроля начала нагрева и начала разложения исследуемого вещества, емкость для размещения навески исследуемого вещества в виде гильзы, установленной с возможностью погружения в...
Тип: Изобретение
Номер охранного документа: 0002280858
Дата охранного документа: 27.07.2006
19.06.2019
№219.017.849c

Датчик резонаторный

Изобретение относится к области измерений механических параметров. Датчик содержит основание из материала с малыми акустическими затуханиями, в котором выполнены сквозные прорези с образованием чувствительного элемента с маятниковым подвесом в виде стержня и стержневого резонатора, концы...
Тип: Изобретение
Номер охранного документа: 0002281515
Дата охранного документа: 10.08.2006
19.06.2019
№219.017.87b5

Взрывозащитная камера

Изобретение относится к области обеспечения безопасности при транспортировке, ликвидации и экспериментальной отработке взрывных устройств, в состав которых могут входить экологически опасные высокотоксичные вещества. Камера содержит корпус, состоящий из цилиндрической части и двух эллиптических...
Тип: Изобретение
Номер охранного документа: 0002337311
Дата охранного документа: 27.10.2008
19.06.2019
№219.017.87c3

Способ определения координат объекта испытаний в момент его подрыва

Изобретение относится к области испытательной и измерительной техники. Техническим результатом является получение пространственных координат подрыва изделия, расширение телесного угла определения координат до 4π, увеличение точности определения координат. Способ определения координат объекта...
Тип: Изобретение
Номер охранного документа: 0002339052
Дата охранного документа: 20.11.2008
Показаны записи 21-30 из 41.
27.04.2016
№216.015.37e4

Способ получения тонкослойных зарядов взрывчатых веществ

Изобретение относится к способу получения зарядов взрывчатых веществ и может быть использовано для получения тонкослойных зарядов из ВВ для различных целей: систем передачи детонации, устройств взрывной логики и др. Способ получения тонкослойных зарядов взрывчатых веществ включает...
Тип: Изобретение
Номер охранного документа: 0002582705
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5e6c

Способ определения характеристик срабатывания детонирующего устройства

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента...
Тип: Изобретение
Номер охранного документа: 0002590960
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.be34

Способ получения смесевого пластичного взрывчатого вещества

Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого...
Тип: Изобретение
Номер охранного документа: 0002616729
Дата охранного документа: 18.04.2017
26.08.2017
№217.015.da46

Способ определения параметров взрывчатого превращения

Изобретение относится к области исследования реакционной способности взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно определения времени до начала самоподдерживающейся реакции и может быть использовано для определения прямым экспериментальным путем критических условий...
Тип: Изобретение
Номер охранного документа: 0002623827
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e9dd

Устройство формирования детонационной волны

Устройство формирования детонационной волны относится к области взрывных работ и может быть использовано при разработке устройств формирования взрывной волны заданной формы в зарядах взрывчатых веществ (ВВ). Устройство включает двухслойную инертную матрицу с детонационной разводкой в виде...
Тип: Изобретение
Номер охранного документа: 0002628115
Дата охранного документа: 15.08.2017
10.05.2018
№218.016.4474

Устройство формирования детонационной волны в заряде взрывчатого вещества

Устройство формирования детонационной волны в заряде взрывчатого вещества (ВВ) относится к области взрывных работ. Устройство включает инертную матрицу с детонационной разводкой, выполненной в виде сети детонационных каналов с общим входным участком, соединенным с источником инициирования, с...
Тип: Изобретение
Номер охранного документа: 0002650006
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4477

Устройство формирования детонационной волны в заряде взрывчатого вещества

Изобретение относится к области взрывных работ, в частности к устройствам формирования детонационной волны в зарядах взрывчатых веществ (ВВ) с внутренним инициированием, и может быть использовано, например, в прострелочно-взрывной аппаратуре, в боевых частях, в конструкции зарядов...
Тип: Изобретение
Номер охранного документа: 0002650003
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.5f08

Цилиндрическое детонационное устройство

Изобретение относится к области испытания материалов, к исследованию свойств материалов при динамическом воздействии, в частности к взрывным устройствам нагружения для исследования сжимаемости материалов с применением цилиндрических зарядов взрывчатых веществ (ВВ) с внешним инициированием....
Тип: Изобретение
Номер охранного документа: 0002656650
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.6184

Устройство для подачи газа во внутреннюю полость многокаскадного осесимметричного устройства имплозивного типа

Изобретение относится к области исследований физики высоких плотностей энергий и термоядерных реакций при реализации высокотемпературных состояний в сжатом газе. Устройство для подачи газа во внутреннюю полость многокаскадного осесимметричного устройства имплозивного типа содержит трубопровод,...
Тип: Изобретение
Номер охранного документа: 0002657086
Дата охранного документа: 08.06.2018
14.06.2018
№218.016.61de

Способ определения термодинамических характеристик газообразных веществ при квазиизэнтропических условиях нагружения в мегабарной области давлений

Изобретение относится к области исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений. Способ, реализуемый в цилиндрическом устройстве, содержащем заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу...
Тип: Изобретение
Номер охранного документа: 0002657353
Дата охранного документа: 13.06.2018
+ добавить свой РИД