×
09.06.2019
219.017.7a36

Результат интеллектуальной деятельности: СПОСОБ ГРАНУЛИРОВАНИЯ ФЛЮСА

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том числе для сварки стали магистральных трубопроводов. Техническим результатом изобретения является повышение прочности гранул, отсутствие в них окисленных металлических компонентов. Согласно способу на поверхность металлической пластины с отражательной способностью не менее 0,65 наносят слой порошка шихты флюса, состоящего из смеси неметаллических и металлических компонентов с размером фракций не более 0,315 мм. Толщина слоя является достаточной для проплавления не менее 90% слоя порошка. Затем воздействуют на порошок шихты флюса потоком световой энергии в виде светового луча с длиной волны излучения более 0,56 мкм. Воздействие осуществляют с плотностью мощности излучения и в течение времени, достаточными для расплавления неметаллических компонентов флюса, и с продольной скоростью перемещения светового луча относительно обрабатываемого порошка 0,01-20,0 см/с. После чего проводят охлаждение капель расплава на поверхности металлической пластины в газовой среде с образованием гранул. 5 з.п. ф-лы, 3 табл.

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов путем расплавления компонентов флюса, превращения их в жидкое состояние, затем в каплеобразную форму с последующим отвердеванием капель в газовой среде.

Изобретение может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том числе для сварки стали магистральных трубопроводов.

В настоящее время известны три основные технологии изготовления сварочных флюсов: спечение, плавление и агломерирование. Сварка высокопрочных сталей требует кроме рафинирования еще и микролегирования сварочной ванны для обеспечения требуемого уровня прочностных и пластических свойств металла сварного шва и сварных соединений. Осуществить микролегирование сварочной ванны через флюс при сварке под плавленым флюсом невозможно, поскольку любые ферросплавы и металлические добавки, введенные в шихту флюса при его плавлении в процессе изготовления, окисляются и теряют свою металлургическую активность. Спеченные флюсы сложны в изготовлении и при их изготовлении также возможно окисление металлических компонентов (статья «Как выбрать сварочный флюс» Головко В.В., журнал «Мир техники и технологий». Апрель 4, (54), 2006 г.).

Технология получения гранулируемой массы, имеющей в своем составе рудоминеральные компоненты, позволяет вводить в состав агломерированных флюсов ферросплавы, лигатуры, осуществляющие микролегирование сварочной ванны при сварке. К недостаткам агломерированных флюсов, полученных скатыванием, комкованием или прессованием в различных вариантах, следует отнести их более низкую, по сравнению с плавлеными флюсами, механическую прочность гранул, а также более высокую способность, чем у плавленых флюсов, насыщаться влагой.

Для повышения механических свойств и качества металла сварного шва необходимо легирование ванны расплава металла сварного шва. Для этого необходимо обеспечить введение модифицирующих и раскисляющих компонентов через сварочную проволоку или флюс. Введение добавок через сварочную проволоку приводит к значительному выгоранию их в сварочной дуге. Введение металлических добавок через плавленый флюс невозможно в связи с их полным окислением в процессе изготовления флюса и низкой прочностью гранул. Изготовление синтетических спеченных флюсов связано с высокотемпературным нагревом (до 1100°С), что приводит к значительному окислению металлических компонентов. Низкая прочность гранул приводит к потере сварочно-технологических свойств флюса из-за образования пылевидной фракции.

Известны способы гранулирования расплава, защищенные патентами РФ №№2295431, 2285076, 2242532, 2144424, а также заявки на изобретения №2002106996, 2001127525, позволяющие получить гранулы за счет быстрого затвердевания жидкого расплава. Однако эти методы требуют нагрева компонентов шихты до расплавления, что приводит к химическому взаимодействию и окислению металлических компонентов шихты с потерей их металлургической активности.

Наиболее близким по технической сущности является способ получения самозащитного гранулированного флюса, включающий измельчение флюсующих ингредиентов и частиц галогенированного полимера с размером частиц 0,1-30 мкм до порошкообразного состояния, смешивание флюсующих ингредиентов с 0,1-5,0 мас.% галогенированного полимера, нагревание до температуры выше температуры плавления полимера для получения агломерированного материала и распыление его для получения гранул флюса (Патент РФ №2086379 С1, опубликованный 10.08.1997 г., МКИ В23К 35/362).

Недостатками указанного выше известного способа получения гранул флюса является то, что в способе прототипа получаемые гранулы обладают низкой прочностью из-за насыщения их элементами хладагента. Кроме того, металлические компоненты флюса, находясь в расплавленном состоянии, окисляются и теряют свою легирующую способность.

Техническим результатом изобретения является получение гранул флюса с повышенной прочностью и содержащих металлические компоненты, обладающие повышенной легирующей способностью.

Технический результат достигается за счет того, что способ гранулирования флюса заключается в том, что на поверхность металлической пластины с отражательной способностью не менее 0,65 наносят слой порошка шихты флюса, состоящего из смеси неметаллических и металлических компонентов с размером фракций более 0,315 мм, толщиной, достаточной для проплавления не менее 90% слоя порошка, при этом содержание неметаллических компонентов должно быть не менее 45 объем.%, затем воздействуют на порошок шихты флюса потоком световой энергии, например лучом лазера с длиной волны излучения более 0,56 мкм, в течение времени менее 20 с и с плотностью мощности излучения 102-106 Вт/см2, с продольной скоростью перемещения луча относительно металлической пластины 0,01-20,0 см/с, после чего проводят охлаждение капель расплава на металлической пластине в нейтральной газовой среде с образованием гранул.

Проблему получения прочных и износостойких плавленых гранул, имеющих в своем составе неокисленные металлические компоненты, можно решить путем расплавления и быстрого затвердевания капель расплава флюса. Добиться такой цели удалось за счет применения в качестве источника нагрева потока световой энергии, например луча лазера или подобных ему источников световых энергий с высокой плотностью мощности излучения.

Металлические компоненты шихты флюса требуют для расплавления значительно большей энергии, чем неметаллические, так как поверхность металлической частицы имеет более высокую отражательную способность световой энергии, а также более высокую теплопроводность, способствующую рассеиванию тепловой энергии по всему объему металлической частицы. В результате этого за время воздействия светового потока с параметрами предлагаемого способа металлические частицы не подвергаются расплавлению.

Луч световой энергии с высокой плотностью мощности излучения наиболее эффективно расплавляют неметаллические компоненты шихты флюса. Это объясняется тем, что поверхность неметаллических частиц флюса имеют меньшую отражательную способность, а также более низкую теплопроводность, чем металлических, что способствует высокой концентрации световой энергии на ее поверхности, которая производит ее послойное расплавление, превращая неметаллические компоненты в жидкое состояние за счет термокапиллярной диффузии. Эта жидкая масса обволакивает нерасплавленные металлические частицы и после завершения воздействия светового потока застывает, образуя гранулы, содержащие внутри нерасплавленные металлические компоненты флюса.

Кроме формирования гранул экспериментально установлено, что процесс сопровождается также очисткой сварочного материала от загрязнений серы, углерода и фосфора.

Исследованиями установлены параметры обработки порошка шихты флюса, позволяющие получать плавленые гранулы, обладающие более высокой прочностью.

Воздействие светового потока на порошок шихты флюса с длительностью более 20 с не позволяет получить флюс, отличный от нейтрального, т.к. в этом случае успевают пройти химико-термические процессы, приводящие к окислению металлических компонентов флюса.

Плотность мощности излучения менее 102 Вт/см2 и скорость перемещения светового луча более 0,01 см/с не позволяют расплавить неметаллические компоненты шихты флюса из-за недостаточного количества подводимой световой энергии, что приводит к появлению нежелательной спеченной корки.

При плотности мощности излучения более 106 Вт/см2 и скорости перемещения светового луча менее 20,0 см/с наблюдается расплавление металлических компонентов, а также усиление процессов испарения других компонентов шихты флюса, что приводит к потере сварочно-технологических свойств флюса.

Длина волны излучения менее 0,56 мкм эффективно нагревает металлические компоненты шихты, что приводит к протеканию в них химико-термических процессов, приводящих к значительному расплавлению и окислению металлической части флюса.

Размер исходной фракции порошка шихты флюса более 0,315 мм приводит к неравномерному распределению элементов внутри одной гранулы, что может создать ликвацию элементов в металле шва.

Использование металлической пластины из материала с отражающей способностью менее 0,65 приводит к поглощению световой энергии и к оплавлению ее и, как следствие, к изменению химического состава гранул и нарушению технологического процесса.

Для получения гранул флюса необходимо и достаточно присутствие в составе компонентов шихты флюса не менее 45 объемн. % неметаллических компонентов.

При содержании неметаллических компонентов менее 45 объемн. % происходит нежелательное более глубокое оплавление металлических частиц компонентов флюса с потерей их металлургических свойств.

Обработка в атмосфере нейтрального газа аргона предохраняет металлические частицы от окисления, сохраняя их металлургическую активность.

Пример конкретного выполнения

На участке подготовки флюсов были изготовлены смеси порошков исходных компонентов флюса с размером фракций менее 0,315 мм. Состав исходной смеси представлен в таблице.

Таблица 1
Состав используемого в примере флюса
п/п Наименование компонента Содержание % по массе Содержание % по объему Вид составляющей флюса
1 Плавиковый шат 27,0 31,0 Неметаллический
2 Электрокорунд 21,7 16,0 Неметаллический
3 Обожженный магнезит 28,0 36,0 Неметаллический
4 Сфеновый концентрат 16,0 13,0 Неметаллический
5 Титаномагнетит 0,5 0,8 Неметаллический
6 Ферротитан 3,1 1,8 Металлический
7 Марганец металлический 3,0 1,0 Металлический
8 Ферробор 0,2 1,0 Металлический
9 Ферросилиций 0,6 0,3 Металлический

На лазерном участке ФГУП ЦНИИ КМ "Прометей" была проведена обработка компонентов порошка флюса с получением гранул. Лазерная обработка проводилась на лазерной технологической установке Комета-2, работающей в непрерывном режиме с длиной волны излучения до 10,6 мкм. Обработку проводили в атмосфере аргона по следующим режимам:

- Плотность мощности лазерного излучения составляла 102 Вт/см2 с длиной волны 0,56 мкм, время обработки компонентов смеси - 20 с, продольная скорость перемещения светового луча относительно металлической пластины с порошком флюса - 0,01 см/с.

- Плотность мощности лазерного излучения составляла 106 Вт/см2 с длиной волны 10,6 мкм, время обработки компонентов смеси - 0,01 с, продольная скоростью перемещения светового луча относительно металлической пластины с порошком флюса - 20,0 см/с.

- Обработка производилась на полированной алюминиевой пластине, отражательная способность которой составляла 0,67.

Затем произвели сварку под флюсом, изготовленным по предлагаемому и известному способам, низколегированной высокопрочной стали марки 10ГН следующего состава, мас.%: С - 0,092; Si - 0,3; Mn - 1,1; Cr - 0,04; Ni - 0,8; Mo - 0,15; Ti - 0,02; Cu - 0,20; Al - 0,03; S - 0,008; P - 0,008; железо - остальное, неплавящимися электродами. После сварки стали провели химический анализ металла сварного шва, полученного по обоим вариантам технологии сварки. Химический состав приведен в таблице 2.

Таблица 2
Химический состав металла шва после сварки под флюсом
Способ Содержание элементов
Al S С Si Mo Cu Ni P Mn Cr Ti Fe
Заявляемый 0,04 0,006 0,072 0,597 0,021 0,210 0,90 0,007 1,940 0,066 0,024 Оста льное
Известный 0,03 0,007 0,090 0,28 0,013 0,200 0,80 0,009 1,02 0,037 0,016

Затем были проведены испытания механической прочности гранул флюса, полученных известным способом (прототипа) и предлагаемым способом.

Результаты химического анализа металла сварного шва показывают, что химический состав металла шва, полученного при сварке под флюсом, полученным предлагаемым способом, имеет более высокую концентрацию легирующих компонентов, чем сварной шов, полученный при сварке под известным флюсом, что подтверждает факт дополнительного легирования металла сварного шва.

Исследование свойств гранул флюса, полученных по предлагаемому и известному способам, приведены в таблице 3.

Из таблицы следует, что гранулы, полученные предлагаемым способом, обладают повышенной прочностью по сравнению с гранулами, полученными известным способом (прототип).

Технико-экономический эффект от применения предлагаемого способа по сравнению с прототипом выразится в повышении прочности и надежности сварных соединений труб за счет создания равнопрочного сварного шва путем дополнительного его легирования.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 25.
29.04.2019
№219.017.3f46

Агломерированный флюс марки 48аф-55

Изобретение может быть использовано для автоматической сварки низколегированных хладостойких сталей нормальной, повышенной и высокой прочности на обычных режимах, а также форсированных режимах и повышенных скоростях сварки низколегированными проволоками. Флюс содержит, мас.%: электрокорунд...
Тип: Изобретение
Номер охранного документа: 0002295431
Дата охранного документа: 20.03.2007
29.04.2019
№219.017.4442

Способ получения нанокомпозитных покрытий

Изобретение относится к электролитическим способам обработки изделий из титановых сплавов для получения защитных покрытий и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей, судостроительной и других отраслях промышленности. Способ включает микродуговое оксидирование...
Тип: Изобретение
Номер охранного документа: 0002471021
Дата охранного документа: 27.12.2012
18.05.2019
№219.017.5614

Печь пиролиза для производства непредельных углеводородов

Изобретение может быть использовано для производства этилена и других непредельных углеводородов. Пирогазовый поток подают через подающие магистрали 1 во входные патрубки двух впускных тройников 2. Пройдя через четыре выходных патрубка двух впускных тройников 2, пирогазовый поток поступает в...
Тип: Изобретение
Номер охранного документа: 0002345122
Дата охранного документа: 27.01.2009
20.05.2019
№219.017.5d4d

Способ микродугового оксидирования титановой проволоки для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование в водном растворе жидкого стекла NaSiO с концентрацией 20,0±2,0 г/л при напряжении от 320 до 340 В в течение 15±2 мин при температуре...
Тип: Изобретение
Номер охранного документа: 0002391449
Дата охранного документа: 10.06.2010
20.05.2019
№219.017.5d4f

Флюс для аргонодуговой сварки изделий из медно-никелевых сплавов

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона стыков труб из медно-никелевого сплава типа МНЖ5-1. Флюс содержит компоненты в следующем соотношении, мас.%: фторид алюминия 56-62, фторид кальция 8-14, хлорид калия 10-20, борный ангидрид 10-20. Флюс...
Тип: Изобретение
Номер охранного документа: 0002396157
Дата охранного документа: 10.08.2010
20.05.2019
№219.017.5d50

Способ производства листов из хладостойкой стали

Изобретение относится к технологии производства листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких температурах, например контейнеров для перевозки и длительного хранения отработавшего ядерного топлива. Для повышения хладостойкости листов из...
Тип: Изобретение
Номер охранного документа: 0002394108
Дата охранного документа: 10.07.2010
20.05.2019
№219.017.5d51

Состав порошковой проволоки для сварки труб категории прочности х90

Изобретение может быть использовано для автоматической и механизированной сварки в среде защитных газов низколегированных трубных сталей категории прочности Х90. Порошковая проволока содержит, мас.%: двуокись титана 4,21-7,32; полевой шпат 0,50-1,50; электрокорунд 0,21-0,71; плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002387527
Дата охранного документа: 27.04.2010
20.05.2019
№219.017.5d58

Способ термической обработки полуфабрикатов из низкоуглеродистых ферритоперлитных сталей

Изобретение относится к технологии термической обработки поковок, предназначенных для изготовления деталей и узлов, работающих при низких температурах, например, контейнеров для перевозки и длительного хранения (более 50 лет) отработавшего ядерного топлива. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002373292
Дата охранного документа: 20.11.2009
20.05.2019
№219.017.5d59

Сварочная проволока для сварки жаропрочных жаростойких сплавов

Изобретение может быть использовано при создании ответственных конструкций из жаростойких жаропрочных сплавов на железохромоникелевой основе, в частности для изготовления реакционных змеевиков высокотемпературных установок пиролиза, подвергающимся значительным статическим нагрузкам, работающих...
Тип: Изобретение
Номер охранного документа: 0002373039
Дата охранного документа: 20.11.2009
30.05.2019
№219.017.6bda

Способ оксидирования титанового сплава для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование МДО в электролите под напряжением, при этом в качестве электролита используют раствор фосфатов или силикатов, а процесс МДО ведут в два...
Тип: Изобретение
Номер охранного документа: 0002367728
Дата охранного документа: 20.09.2009
Показаны записи 11-20 из 41.
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
11.03.2019
№219.016.d946

Способ получения методом наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне

Изобретение относится к сварочному производству, а именно к способам наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне. Способ включает изготовление присадочного материала из смеси порошков и связующего в виде двух паст....
Тип: Изобретение
Номер охранного документа: 0002350441
Дата охранного документа: 27.03.2009
20.03.2019
№219.016.e825

Хладостойкая сталь высокой прочности

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других...
Тип: Изобретение
Номер охранного документа: 0002458176
Дата охранного документа: 10.08.2012
20.03.2019
№219.016.e95a

Способ определения работоспособности стальных газонефтепроводных труб магистральных трубопроводов

Изобретение относится к способам определения работоспособности газонефтепроводных стальных труб магистральных трубопроводов и может быть использовано в нефтяной и газовой промышленности. Техническим результатом является повышение информативности и полноты оценки работоспособности трубопроводов...
Тип: Изобретение
Номер охранного документа: 0002442114
Дата охранного документа: 10.02.2012
29.03.2019
№219.016.ee9f

Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров

Изобретение относится к области металлургии, в частности к производству экономнолегированной хладостойкой стали для сварных труб морских газопроводов с рабочим давлением до 19 МПа, эксплуатируемых при пониженных температурах. Техническим результатом изобретения является обеспечение высокой...
Тип: Изобретение
Номер охранного документа: 0002270873
Дата охранного документа: 27.02.2006
08.04.2019
№219.016.fed4

Состав проволоки для механизированной сварки

Изобретение относится к области металлургии и сварки, а именно к сварочным проволокам, используемым для механизированной сварки в среде защитных газов конструкций из немагнитной высокопрочной аустенитной азотистой стали, применяемой в различных отраслях промышленности, в частности судостроении...
Тип: Изобретение
Номер охранного документа: 0002437746
Дата охранного документа: 27.12.2011
10.04.2019
№219.017.0668

Высокопрочная немагнитная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных немагнитных коррозионно-стойких сталей, используемых в машиностроении, приборостроении, судостроении и буровой технике. Сталь содержит углерод, кремний, марганец, хром, никель, азот, молибден, ванадий, ниобий, бор,...
Тип: Изобретение
Номер охранного документа: 0002421538
Дата охранного документа: 20.06.2011
10.04.2019
№219.017.074a

Аустенитная высокопрочная коррозионно-стойкая сталь и способ ее выплавки

Изобретение относится к области металлургии, в частности к составу аустенитной высокопрочной коррозионно-стойкой стали и способу ее выплавки. Аустенитная высокопрочная коррозионно-стойкая сталь содержит следующие компоненты, мас.%: углерод 0,04-0,05; хром 19,5-20,5; никель 4,5-5,5; марганец...
Тип: Изобретение
Номер охранного документа: 0002456365
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.3395

Высокопрочная немагнитная сталь

Изобретение относится к области металлургии, в частности к легированным высокопрочным, немагнитным, коррозионно-стойким сталям, используемым в качестве конструкционных материалов в судостроении, энергетике, машиностроении и др. отраслях промышленности. Сталь содержит углерод, кремний, марганец,...
Тип: Изобретение
Номер охранного документа: 0002447186
Дата охранного документа: 10.04.2012
+ добавить свой РИД