×
09.06.2019
219.017.79c6

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО ВОЛОКНА НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого волокна. Волокнообразующий раствор готовят на основе оксихлорида алюминия, силиказоля и органического полимера. Смесь исходных компонентов используют в виде сухого концентрата, который растворяют в воде требуемой вязкости. Растворение сухого концентрата смеси исходных компонентов проводят в подогретой до 40-60°С воде на воздухе при постоянном перемешивании со скоростью 200-400 об/мин. 2 н. и 2 з.п. ф-лы, 1 табл.

Изобретение относится к области теплозащитных материалов, в частности к способу получения высокотермостойкого волокна на основе оксида алюминия, выдерживающего длительную эксплуатацию при 1600°С.

Известен способ получения волокна, содержащего 68-80% Аl2О3, 14-30% SiO2 и 1-10% кислотного оксида, такого как В2О3, TiO2 и Р2О5, по золь-гель методу. Способ включает приготовление исходного волокнообразующего раствора, подогрев его до 40-230°С и выдержку в течение нескольких часов с целью доведения его до требуемой вязкости, формование волокна и последующую термообработку этого волокна при 630-1360°С (патент GВ 1119132).

Недостатком данного способа является необходимость повышения концентрации волокнообразующего раствора при повышенной температуре (упаривание). Этот процесс сопровождается выделением летучих веществ, требует значительного времени и тщательной очистки воздуха в зоне технологического процесса. Кроме того, особенности используемой технологии упаривания затрудняют контроль реологических свойств раствора.

Известен способ получения теплоизоляционного волокна из формовочного раствора, содержащего соединения алюминия и кремния, органический полимер, такой как поливиниловый спирт (ПВС) и соли цинка, меди или олова. Формование проводят по сухому методу, а полученные волокна подвергают обжигу на воздухе при температуре 1300-1600°С (патент ЕР 0097694).

Обеспечение требуемой вязкости волокнообразующего раствора в данном способе обеспечивается путем введения солей металлов цинка, меди или олова, которые отрицательно влияют на высокотемпературные свойства волокон.

Наиболее близким к предлагаемому способу является выбранный за прототип способ получения высокотемпературных волокон на основе оксида алюминия, включающий приготовление волокнообразующего раствора, содержащего основный хлорид алюминия (оксихлорид алюминия), соединение кремния (силиказоль), органический полимер и воду, путем смешения компонентов, обеспечение необходимой вязкости путем упаривания волокнообразующего раствора при пониженном давлении и температуре 50°С, формование волокон методом раздува волокнообразующего раствора в высокоскоростном газовом потоке с последующей термообработкой полученной массы волокон. Соотношение алюминия и кремния в растворе, подсчитанное по весовому соотношению оксидов Аl2О3/SiO2, составляет от 99/1 до 65/35 (патент US 6746979).

Недостатком данного способа является необходимость выдержки волокнообразующего раствора при пониженном давлении при 50°С (упаривание) в течение продолжительного времени для достижения необходимой для формования волокна вязкости.

Обычно процесс упаривания волокнообразующего раствора связан с длительным нагревом раствора при температуре от 30 до 50°С под вакуумом, в результате чего происходит сшивка цепей присутствующего в растворе полимера по боковым ОН-группам многовалентными ионами алюминия и кремния, содержащимися в растворе, что обеспечивает увеличение вязкости и прядомости раствора. Однако время, оптимальное для достижения нужной степени сшивки при упаривании раствора, существенно меньше, чем время, технологически необходимое для удаления избыточной воды, это часто приводит к чрезмерной степени сшивания полимера и вызывает склонность упаренных таким образом растворов к гелированию в системе подачи раствора для формования волокна. Максимальный срок существования волокнообразующего раствора не превышает 24 часов. Кроме того, конструкция существующих установок для упаривания под вакуумом затрудняет контроль вязкости и свойств раствора в процессе упаривания, что, учитывая неизбежный разброс свойств исходных материалов, ведет к нестабильности свойств получаемых волокнообразующих растворов.

Технической задачей данного изобретения является разработка высокотехнологичного способа получения дискретного высокотемпературного волокна на основе оксида алюминия, обеспечивающего сокращение технологического цикла, повышение контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и, соответственно, стабильности химического состава и свойств получаемого волокна.

Для решения поставленной задачи предложен способ получения высокотемпературного волокна на основе оксида алюминия, включающий приготовление волокнообразующего раствора, содержащего смесь исходных компонентов оксихлорида алюминия, силиказоля и органического полимера, получение волокна из волокнообразующего раствора и его последующую термообработку, отличающийся тем, что смесь исходных компонентов используют в виде сухого концентрата, состав которого по соотношению оксидов алюминия и кремния соответствует требуемому составу высокотемпературного волокна, а приготовление волокнообразующего раствора осуществляют путем растворения в воде сухого концентрата смеси исходных компонентов до требуемой вязкости раствора, причем растворение сухого концентрата смеси исходных компонентов проводят в подогретой до 40-60°С воде на воздухе при постоянном перемешивании со скоростью 200-400 об/мин.

Сухой концентрат смеси исходных компонентов получают путем высушивания волокнообразующего раствора в испарителе или методом воздушного распыления в распылительной сушилке.

Получение волокна из волокнообразующего раствора осуществляют путем аэродинамического распыления раствора.

Высокотемпературное дискретное волокно на основе оксида алюминия, полученное предлагаемым способом, имеет соотношение оксидов Al2О3/SiO2 от 70/30 до 99/1.

Преимуществами предлагаемого способа являются упрощение технологии получения волокнообразующего раствора требуемого состава и вязкости за счет исключения операции его упаривания в вакуумном испарителе и обеспечение возможности точного контроля вязкости непосредственно в процессе перемешивания сухого концентрата смеси исходных компонентов с водой. Скоростное высушивание волокнообразующего раствора позволяет избежать его преждевременного гелирования, происходящего при обычно применяемом упаривании.

При использовании сухого концентрата смеси исходных компонентов доведение волокнообразующего раствора до нужной концентрации производится на воздухе путем растворения концентрата в подогретой до 40-60°С воде, а доведение полученного раствора до нужной степени полимеризации производится в процессе перемешивания со скоростью 200-400 об/мин с одновременным контролем реологических свойств.

Предлагаемый способ повышает технологические характеристики и стабильность качества высокотемпературного волокна на основе оксида алюминия, особенно в условиях малосерийного производства. Исключение операции упаривания волокнообразующего раствора позволит повысить производительность процесса, улучшить экологию на рабочем месте и облегчить контроль вязкости раствора, так как для этого не требуется извлечение емкости с волокнообразующим раствором из вакуумного испарителя, после чего раствор становится непригодным для дальнейшего использования.

Кроме того, данный способ позволяет значительно увеличить срок хранения приготовленного сухого концентрата волокнообразующего раствора, что обеспечит возможность наработки значительного количества однородных партий сухого концентрата с последующим приготовлением из них партий готового к использованию волокнообразующего раствора с постоянными гарантированными свойствами в любом объеме.

Примеры осуществления.

Пример 1. Получение муллитовых дискретных волокон 80% вес. Аl2O3/20% вес. SiO2.

Смесь оксихлорида алюминия, силиказоля, поливинилового спирта и воды, обеспечивающую соотношение по оксидам Al2O3/SiO2=80/20, наливали тонким слоем, не превышающим 2 мм, в контейнер пленочного испарителя и сушили при температуре 50°С при обычном давлении на воздухе. После испарения жидкости полученный сухой концентрат смеси исходных компонентов собирали в накопительную емкость. Получаемый таким образом сухой концентрат может быть приготовлен конвейерным методом в большом количестве и храниться длительное время.

Затем 672 г дистиллированной воды наливали в реактор, оснащенный рубашкой с циркуляцией теплоносителя - воды температурой 55°С - и лопастной мешалкой. В подогретую воду постепенно вводили 327 г сухого концентрата смеси исходных компонентов при непрерывном помешивании с одновременным контролем вязкости. Скорость перемешивания составила 400 об/мин. Полученную смесь держали на водяной бане при перемешивании в течение 0,5 часа, после чего готовый волокнообразующий раствор охлаждали до 25°С. Вязкость полученного раствора, измеренная ротационным вискозиметром при 25°С, составила 9,2 пуаз. Полученный волокнообразующий раствор процедили через сито и получали волокна методом аэродинамического распыления с одновременной сушкой. Термообработку проводили при температуре 1300°С в течение 5 часов.

Пример 2. Получение дискретных волокон 99% вес. Аl2O3/1% вес. SiO2.

Получение сухого концентрата из водной смеси оксихлорида алюминия, силиказоля и полиэтиленгликоля, обеспечивающей соотношение по оксидам Al2O3/SiO2=99/1, проводили высушиванием полученного раствора при 110°С в распылительной сушилке Niro Atomizer.

Получение высокотемпературного волокна на основе оксида алюминия проводили по примеру 1, только перемешивание на водяной бане проводили со скоростью 350 об/мин при температуре 60°С в течение 1 часа, а термообработку проводили при температуре 900°С в течение 1 часа.

Пример 3. Получение муллитовых дискретных волокон 70% вес. Аl2O3/30% вec. SiO2.

По примеру 1 получали сухой концентрат из водной смеси оксихлорида алюминия, силиказоля и поливинилового спирта, обеспечивающей соотношение по оксидам Al2O3/SiO2=70/30.

Получение волокон проводили по примеру 1, перемешивание на водяной бане проводили со скоростью 200 об/мин при температуре 40°С в течение 3/4 часа, а термообработку проводили при температуре 1200°С в течение 2 часов.

Пример 4 (по прототипу).

К 1 л водного раствора оксихлорида алюминия концентрацией 165 г/л добавили 606 г 20% вес. раствора силиказоля и 608 г 5% вес. раствора поливинилового спирта, перемешали в течение 0,5 часа и поставили для упаривания в герметичную камеру с пониженным давлением и температурой 50°С. После выдержки в течение 3 часов вязкость волокнообразующего раствора составила 60 пуаз при комнатной температуре. Формовали волокна методом раздува волокнообразующего раствора в высокоскоростном воздушном потоке. Волокна собирали на сито в виде войлочного материала, полученный материал подвергли термообработке на воздухе при 1250°С в течение 1 часа.

При проведении испытаний было получено по 5 партий волокнообразующего раствора каждого химического состава для определения процента воспроизводимости его вязкости. Основные показатели технологического процесса получения дискретного волокна приведены в таблице.

Таблица
Срок хранения сухого концентрата волокнообразующего раствора Время приготовления волокнообразующего раствора Воспроизводимость волокнообразующего раствора требуемого хим. состава и вязкости Использование герметичного вакуумного оборудования
Пример 1 1 год 1,5 час 100% -
Пример 2 1 год 1 час 95% -
Пример 3 1 год 1 час 100% -
Пример 4 (по прототипу) - 3,5 час 40% необходимо

Из таблицы видно, что благодаря получению сухого концентрата смеси исходных компонентов в отдельном производстве на подготовительной стадии можно существенно упростить процесс получения высокотемпературных волокон на основе оксида алюминия. Кроме того, благодаря длительным срокам хранения сухих исходных компонентов намного повышается технологичность процесса - можно быстро получить партию дискретного волокна со 100% воспроизводимостью состава и свойств в любое время в зависимости от потребностей производства.

Волокна, полученные по предлагаемому способу, могут найти широкое применение при изготовлении теплозащитных материалов для высокотемпературных печей и горячих частей энергетических установок и в других областях народного хозяйства.

Источник поступления информации: Роспатент

Показаны записи 331-340 из 354.
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7b23

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки. Для обеспечения повышенной кратковременной прочности...
Тип: Изобретение
Номер охранного документа: 0002373038
Дата охранного документа: 20.11.2009
09.06.2019
№219.017.7cba

Радиопоглощающий материал

Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных...
Тип: Изобретение
Номер охранного документа: 0002410777
Дата охранного документа: 27.01.2011
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
10.07.2019
№219.017.acc0

Защитное технологическое покрытие для бериллия

Изобретение относится к покрытиям для защиты от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из бериллия. Технический результат изобретения заключается в создании защитного покрытия для бериллия, обладающего повышенной термостойкостью и...
Тип: Изобретение
Номер охранного документа: 0002317954
Дата охранного документа: 27.02.2008
Показаны записи 11-12 из 12.
08.03.2019
№219.016.d52d

Способ получения комбинированной нити на основе коротких волокон и устройство для его осуществления

Изобретение относится к способам получения комбинированных нитей, содержащих короткие волокна, в частности, к высокотемпературным нитям для получения огнеупорных материалов, а также к устройствам для их получения. Способ получения комбинированной нити на основе коротких волокон, включает подачу...
Тип: Изобретение
Номер охранного документа: 0002419692
Дата охранного документа: 27.05.2011
18.05.2019
№219.017.5b73

Способ получения волокнистого керамического материала

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002466966
Дата охранного документа: 20.11.2012
+ добавить свой РИД