×
09.06.2019
219.017.796c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИТЕЙНЫХ ЖАРОПРОЧНЫХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей, повышение его жаропрочности и увеличение выхода годного при литье лопаток с монокристаллической структурой. Предложен способ получения литейных жаропрочных сплавов на никелевой основе, включающий расплавление состоящей из отходов металлошихты, рафинирование ее в вакууме при температуре расплава 1500-1700°С и присадку РЗМ в количестве 0,015-0,20 в % от массы металлошихты. При рафинировании металлошихты вводят 0,001-0,05% углерода от ее массы и осуществляют циклическую обработку расплава путем нагрева и охлаждения, причем соотношение продолжительности нагрева и охлаждения в цикле составляет (0,5-1,0):(1,0-1,5). Перед присадкой РЗМ вводят кальций и/или магний. Металлошихта состоит из отходов литейного производства и/или утилизированных деталей из литейных жаропрочных сплавов, подвергнутых пескоструйной или дробеструйной обработке поверхности. Расплавление металлошихты могут производить под давлением инертного газа 50-500 мм рт.ст. Кальций и/или магний вводят при их соотношении с РЗМ Q=(0,1-1,0)Q, где Q - количество кальция и/или магния в % от массы металлошихты, Q - количество РЗМ в % от массы металлошихты. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий, преимущественно монокристаллических лопаток газотурбинных двигателей, створок реактивного сопла, секторов статора, диффузоров и др.

В качестве отходов могут применяться как отходы литейного производства (литники, литниковые чаши, бракованные лопатки), так и утилизированные детали, отработавшие ресурс в газотурбинном двигателе.

Отходы загрязнены примесями - газами (кислородом и азотом) и неметаллическими включениями (оксидами, нитридами, сульфидами и др.)

Между тем, получить высококачественные лопатки с бездефектной монокристаллической структурой возможно только при использовании для их отливки металла с ультранизким содержанием в нем вредных примесей кислорода, азота, серы.

Известен способ получения литейных жаропрочных сплавов на никелевой основе, включающий загрузку и расплавление шихтовых свежих материалов и отходов в вакууме, рафинирование, введение активных легирующих элементов и слив металла, в котором первоначально осуществляют загрузку и расплавление свежих шихтовых материалов, затем вводят отходы, рафинирование проводят в течение 10-20 минут при температуре, определяемой из уравнения: Т=(1550-1570°C)+(20°C×0,1(К-10), где К - количество использованных отходов, мас.%. Количество используемых отходов составляет до 80 мас.% от металлошихты. Перед сливом металла осуществляют раскисление редкоземельными металлами в количестве 0,01-0,05 мас.% шихты из свежих материалов (Патент РФ №1709738).

Недостатком известного способа является невозможность обеспечения в сплаве низкого содержания вредных примесей, которое требуется для получения монокристаллических отливок с высоким выходом годного.

Известен способ получения безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, проведение обезуглероживающего рафинирования расплава в две стадии в атмосфере инертного газа, введение хрома и активных легирующих элементов, рафинирование расплава кальцием и редкоземельными металлами в вакууме, в котором шихтовые материалы содержат до 70% отходов безуглеродистых литейных жаропрочных сплавов на никелевой основе, которые присаживают после введения хрома, а перед рафинированием кальцием и редкоземельными металлами расплав нагревают до температуры, превышающей температуру ликвидуса сплава не менее чем на 250°C, с последующей выдержкой при этой температуре (Патент РФ №2274671).

Недостатком способа является невозможность использования 100% отходов и невозможность получения в сплаве низких содержаний вредных примесей.

Известен способ переработки отходов жаропрочных сплавов, который включает их расплавление в вакуумной индукционной печи с получением слитка и его последующий переплав в установках электрошлакового кокильного литья с получением шихтовых заготовок (Патент РФ №2302473).

Недостатком способа является повышенное содержание кислорода и азота в сплаве (электрошлаковое литье осуществляется на воздухе), что снижает качество отливок.

Наиболее близким к предлагаемому способу, взятым за прототип, является способ получения литейных жаропрочных сплавов на никелевой основе, включающий загрузку и расплавление металлошихты, составляющей 100% отходов никелевых сплавов, рафинирование металлошихты в вакууме, введение РЗМ, в котором рафинирование осуществляют в вакууме 3×10-2-10-3 мм рт.ст при температуре расплава 1500-1700°C в течение 2-8 минут, а РЗМ вводят в количестве 0,015-0,20% от массы металлошихты.

В качестве РЗМ используют один или несколько элементов из группы церий, иттрий, лантан, скандий (Патент РФ №2190680).

Недостатком способа-прототипа является неполное удаление вредных примесей кислорода, азота и серы из сплава, что вызывает снижение жаропрочности (времени до разрушения при испытании на длительную прочность), а также снижение выхода годного при отливке деталей, преимущественно с монокристаллической структурой.

Технической задачей изобретения является разработка способа получения литейных жаропрочных сплавов на никелевой основе, который обеспечивает значительное снижение в сплаве содержания вредных примесей, повышение его жаропрочности и увеличение выхода годного при литье лопаток с монокристаллической структурой.

Техническая задача достигается тем, что предложен способ получения литейных жаропрочных сплавов на никелевой основе, включающий расплавление металлошихты, содержащей 100 мас.% отходов, рафинирование ее в вакууме при температуре расплава 1500-1700°C и присадку РЗМ в количестве 0,015-0,20 мас.% от металлошихты, в котором при рафинировании металлошихты вводят 0,001-0,05% углерода от ее массы и осуществляют циклическую обработку расплава путем нагрева и охлаждения, причем соотношение продолжительности нагрева и охлаждения в цикле составляет (0,5-1,0):(1,0-1,5), а перед присадкой РЗМ вводят кальций и/или магний.

Металлошихта состоит из отходов литейного производства и/или утилизированных деталей из литейных жаропрочных сплавов, подвергнутых пескоструйной или дробеструйной обработке поверхности.

Расплавление металлошихты могут проводить под давлением инертного газа 50-500 мм рт.ст.

Кальций и/или магний вводят при их соотношении с РЗМ Q1=(0,1-1,0)Q2, где Q1 - количество кальция и/или магния в % от массы металлошихты, Q2 - количество РЗМ в % от массы металлошихты.

Установлено, что введение углерода во время рафинирования расплава с последующей циклической его обработкой путем нагрева и охлаждения позволяют дополнительно очистить расплав от кислорода и азота.

Осуществление нагрева при циклической обработке понижает вязкость расплава и способствует его интенсивному перемешиванию с выносом из глубины жидкой ванны новых порций металла на поверхность ванны, тем самым ускоряя процесс поверхностного рафинирования. Последующее охлаждение расплава путем отключения подачи мощности на индуктор не позволяет перегреть расплав выше температуры 1700°C и тем самым предотвратить его взаимодействие с керамической футеровкой тигля и загрязнение металла неметаллическими включениями.

Соотношение периодов нагрева и охлаждения должно составлять (0,5-1,0):(1,0-1,5). При соотношении длительности нагрева и охлаждения более 1,0:1,5 температура расплава смещается в область высоких температур, что ведет к загрязнению металла неметаллическими включениями в результате взаимодействия расплава с материалом футеровки тигля. При соотношении длительности нагрева и охлаждения менее 0,5:1,0 температура расплава смещается в область чрезмерно низких температур, его вязкость увеличивается и условия рафинирования ухудшаются.

Установлено, что введение в расплав кальция и/или магния, в затем РЗМ позволяет дополнительно отрафинировать расплав и тем самым обеспечить получение более низкого содержания вредных примесей в сплаве.

Следовательно, введение углерода во время рафинирования расплава, его циклическая обработка путем нагрева и охлаждения при соотношении продолжительности нагрева и охлаждения в цикле (0,5-1,0):(1,0-1,5) и введение кальция и/или магния перед присадкой РЗМ позволяют дополнительно очистить расплав от примесей кислорода, азота и серы и тем самым обеспечить получение их ультранизких содержаний в сплаве, что позволяет повысить его жаропрочность (время до разрушения при испытании на длительную прочность) и увеличить выход годного при литье лопаток с монокристаллической структурой.

Экспериментально установлено, что кальций и/или магний предпочтительно вводить при соотношении Q1=(0,1-1,0)Q2, где Q1 - количество кальция и/или магния в % от массы металлошихты, Q2 - количество РЗМ в % от массы металлошихты (0,015-0,20 мас.%).

Примеры осуществления способа

Пример 1

По предлагаемому способу осуществляли переплав металлошихты в виде 100% отходов литейного производства жаропрочного сплава системы Ni-Co-Cr-Al-Mo-W-Nb-Re-Ta-C. Плавки проводили в вакуумной индукционной печи в керамическом тигле емкостью 20 кг. Всего сделали 4 плавки.

В тигель загружали и расплавляли отходы сплава. Рафинирование расплава осуществляли в вакууме при температуре 1650°C. На первой плавке при рафинировании отходов в вакууме ввели 0,001% углерода и в количестве от массы металлошихты и осуществили 2-кратную циклическую обработку расплава путем индукционного нагрева в течение двух минут и охлаждения в течение четырех минут. Затем ввели 0,0015% Ca, после чего присадили 0,015% Ce. На следующих трех плавках при рафинировании металлошихты вводили углерод и проводили циклическую обработку расплава с технологическими параметрами, приведенными в таблице. Перед присадкой РЗМ вводили кальций и/или магний. Технологические параметры плавок и полученные результаты по чистоте металла, по жаропрочности (τ - время до разрушения, ч, при испытании на длительную прочность) и выходу годного отливок приведены в таблице. Там же приведены технологические параметры плавки по способу-прототипу и полученные результаты.

Пример 2

По предлагаемому способу осуществляли переплав металлошихты в виде 50% отходов литейного производства и 50% отходов в виде утилизированных деталей в виде лопаток газовой турбины после эксплуатации (суммарно 100% отходов литейного жаропрочного сплава системы Ni-Co-Cr-Al-Nb-Ti-W-Mo-C). Расплавление отходов провели под давлением 200 мм рт.ст. аргона. Рафинирование расплава проводили в вакууме при температуре 1500°C. При рафинировании расплава вводили углерод в количестве 0,025% от массы металлошихты и осуществляли 2-кратную циклическую обработку расплава путем индукционного нагрева в течение 1,5 минуты и охлаждения в течение 2-х минут. Затем вводили вместе 0,025% Ca и 0,025% Mg от массы металлошихты, после чего присадили вместе 0,05% Ce и 0,05% Y от массы металлошихты.

Пример 3

По предлагаемому способу осуществляли переплав металлошихты в виде 100% отходов (утилизированных деталей - лопаток газовой турбины после эксплуатации) сплава системы Ni-Co-Cr-W-Mo-Nb-V-Al-Ti-C. Предварительно перед плавкой все лопатки подвергли дробеструйной обработке поверхности для удаления нагара, образовавшегося в процессе экплуатации. Расплавление отходов провели под давлением 500 мм рт.ст. аргона. Рафинирование расплава проводили в вакууме при температуре 1700°C. При рафинировании расплава вводили углерод в количестве 0,05% от массы отходов и осуществили 3-кратную циклическую обработку расплава путем индукционного нагрева в течение 1 минуты и охлаждения в течение 1 минуты. Затем металл охладили и ввели 0,1% Ca от массы металлошихты, после чего присадили вместе 0,1% La и 0,1% Sc от массы отходов.

Пример 4

По предлагаемому способу осуществляли переплав металлошихты в виде 100% отходов (утилизированных деталей - лопаток газовой турбины после эксплуатации, которые подвергли дробеструйной обработке поверхности) сплава системы Ni-Co-Cr-W-Mo-Nb-V-Al-Ti-C. Расплавление отходов провели под давлением 50 мм рт.ст. аргона. Рафинирование расплава проводили в вакууме при температуре 1650°C. При рафинировании расплава вводили углерод в количестве 0,05% от массы отходов и осуществили 3-кратную циклическую обработку расплава путем индукционного нагрева в течение 1 минуты и охлаждения в течение 3 минуты. Затем металл охладили и ввели 0,20% Mg от массы металлошихты, после чего присадили 0,20% La от массы отходов.

Пример 5

По способу-прототипу осуществляли переплав 100% отходов литейного производства жаропрочного сплава системы Ni-Co-Cr-Al-Nb-Ti-W-Mo-C.

В тигель загрузили и расплавляли в вакууме отходы сплава. Рафинирование расплава осуществляли в вакууме при температуре 1600°C в течение 5 мин, после чего ввели вместе 0,05% La и 0,05% Sc от массы отходов.

Из таблицы видно, что на плавках 1, 2, 3, 4, выплавленных по предлагаемому способу, получены низкие содержания в металле кислорода (0,0003-0,0005%), азота (0,0002-0,0003%) и серы (0,0003-0,0004%), а также высокие значения времени до разрушения при испытании на длительную прочность (τ=132-140 ч при Т=975°C и σ=30 кгс/мм2). В расплаве, выплавленном по способу-прототипу (плавка 5) получены повышенные (на порядок) количества примесей кислорода (0,0012%), азота (0,0010%) и серы (0,0010%), низкие значения времени до разрушения (τ=90 ч при Т=975°C и σ=30 кгс/мм2) и низкий выход годного лопаток по монокристальности (50%).

Использование предлагаемого способа позволит получать высококачественные (ультрачистые) шихтовые заготовки современных жаропрочных сплавов на никелевой основе из отходов литейного производства и/или утилизированных деталей для изготовления отливок, преимущественно монокристаллических лопаток с высоким выходом годного по монокристальности и высокой жаропрочностью.

Применение предлагаемого способа обеспечит использование при плавке 100% отходов, что сэкономит дорогостоящие и дефицитные шихтовые материалы (рений, рутений, кобальт, тантал, никель, ниобий и др.) и снизит стоимость готовой продукции (лопаток турбины газотурбинных двигателей и других деталей) из современных литейных жаропрочных сплавов на 30-50%.

Источник поступления информации: Роспатент

Показаны записи 341-350 из 354.
10.07.2019
№219.017.acc1

Способ изготовления многослойной панели

Изобретение относится к области изготовления панелей путем формования в автоклаве при повышенном давлении и может найти применение в аэрокосмической, судостроительной и других отраслях промышленности. Предложен способ изготовления многослойной панели, состоящей из слоистой обшивки и...
Тип: Изобретение
Номер охранного документа: 0002317210
Дата охранного документа: 20.02.2008
10.07.2019
№219.017.acd7

Устройство для пропитки волокнистого длинномерного материала связующим

Изобретение относится к устройствам для пропитки волокнистого длинномерного материала связующим. Устройство для пропитки содержит пропитывающий узел, выполненный в виде емкости с отверстиями для подачи связующего на материал, патрубки для подачи связующего в пропитывающий узел. На наружной...
Тип: Изобретение
Номер охранного документа: 0002318610
Дата охранного документа: 10.03.2008
10.07.2019
№219.017.adfd

Состав для покрытия

Изобретение относится к составу, предназначенному для декоративной окраски элементов конструкций, приборов из алюминиевых сплавов, полимерных композиционных материалов и пластических масс, в том числе для окраски элементов кабины пилотов, панелей светопроводов и других деталей. Состав включает...
Тип: Изобретение
Номер охранного документа: 0002335521
Дата охранного документа: 10.10.2008
11.07.2019
№219.017.b2a9

Способ получения полуфабрикатов из высокопрочных никелевых сплавов

Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка...
Тип: Изобретение
Номер охранного документа: 0002694098
Дата охранного документа: 09.07.2019
13.07.2019
№219.017.b3e4

Защитное технологическое покрытие

Изобретение относится к защитным покрытиям от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей в машиностроении и в других отраслях народного хозяйства. Технический результат изобретения заключается в создании защитного...
Тип: Изобретение
Номер охранного документа: 0002379238
Дата охранного документа: 20.01.2010
12.08.2019
№219.017.be7c

Способ производства литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок. Способ производства литейных жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002696999
Дата охранного документа: 08.08.2019
12.08.2019
№219.017.bf1f

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству безуглеродистых литейных жаропрочных сплавов на основе никеля, и может быть использовано при производстве заготовок для литья изделий, преимущественно монокристаллических рабочих лопаток газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002696625
Дата охранного документа: 06.08.2019
02.10.2019
№219.017.cea0

Керамический композиционный материал и изделие, выполненное из него

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002700428
Дата охранного документа: 17.09.2019
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
Показаны записи 321-327 из 327.
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.5f7f

Способ фиксации рабочего конца волоконного оптического зонда для исследования гемодинамики тканей пародонта

Изобретение относится к области медицины, а именно к стоматологии, и предназначено для использования при функциональной диагностике состояния микроциркуляторно-тканевой системы пародонта. Изготавливают одноэтапно, непосредственно перед проведением исследования, оттиск. Для этого покрывают...
Тип: Изобретение
Номер охранного документа: 0002744762
Дата охранного документа: 15.03.2021
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД