×
09.06.2019
219.017.7636

Результат интеллектуальной деятельности: СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ УГЛЕРОДНЫХ НАНОТРУБОК

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для термической очистки углеродных нанотрубок. Очищение нанотрубок происходит при контролируемом термическом отжиге на воздухе. Способ термической очистки углеродных нанотрубок осуществляется при контроле процесса отжига нанотрубок путем построения графика зависимости массы очищаемых углеродных нанотрубок от времени их отжига, с измерением массы очищаемых нанотрубок в каждый заданный момент их отжига. Отжиг очищаемых углеродных нанотрубок проводится вплоть до выхода на плато кривой зависимости массы очищаемых углеродных нанотрубок от времени их нагрева. Регистрация выхода на плато кривой зависимости массы очищаемых углеродных нанотрубок от времени их отжига происходит по величине угла наклона касательной к вышеуказанной кривой в области ее выхода на плато, причем угол наклона касательной должен находиться в пределах от 0 до 1°. Технический результат – улучшение качества процесса и надежности термической очистки углеродных нанотрубок. 2 ил.

Изобретение относится к области нанотехнологии, а конкретно, к изготовлению наноматериалов. Изобретение предназначено для термической очистки углеродных нанотрубок путем отжига на воздухе при контроле процесса отжига.

В случае использовании углеродных нанотрубок для изготовления материалов медицинского применения необходимо считаться с проблемой недостаточной чистоты применяемых нанотрубок, что может иметь вредные последствия для здоровья пациентов, подвергнутых оперативному лечению с использованием таких материалов. Вследствие этого возникает необходимость в дополнительной очистке нанотрубок перед их применением. Особую роль это играет при изготовлении нанокомпозитных биоконструкций, формируемых экологически чистым бесконтактным лазерным методом, так как они предназначены для использования при эндопротезировании суставов человеческого организма, а также при имплантации в сердечно-сосудистой системе [1].

Известен способ термической очистки многослойных углеродных нанотрубок от примесных углеродных материалов путем селективного окисления нанотрубок при их отжиге с температурой ~ 700°, с размещением очищаемых углеродных нанотрубок во вращающейся кварцевой трубке при продуве воздухом, что позволяет отделять нанотрубки от примесных углеродных материалов за счет более высокой скорости травления этих материалов, чем у нанотрубок [2].

Недостатки такого способа термической очистки углеродных нанотрубок заключаются в сложности конструкции применяемого устройства для очистки нанотрубок и, вследствие этого, в возможности полного или частичного разлета очищаемых углеродных нанотрубок при разгерметизации кварцевой трубки, а также в отсутствии надежного контроля процесса и точной регистрации продолжительности отжига углеродных нанотрубок.

Известен способ термической очистки однослойных углеродных нанотрубок от примесей аморфного углерода, мелких аморфных углеродных листов и металлосодержащих остаточных частиц катализатора путем отжига при температуре от 600 до 1000°С в отжигающем газе, состоящим из смеси углекислого газа, инертных газов, азота и их сочетаний, водяного пара, а также путем отжига в вакууме [3].

К недостаткам указанного способа термической очистки в отжигающем газе углеродных нанотрубок можно отнести трудность подготовки и применения смеси газов сложного состава, заполняющих герметичный аппарат, предназначенный для эксплуатации в напряженном тепловом режиме, а также в отсутствии надежного контроля процесса и точной регистрации продолжительности отжига углеродных нанотрубок.

Наиболее близким техническим решением к заявляемому способу термической очистки углеродных нанотрубок является способ очистки многослойных углеродных нанотрубок от примесных углеродных материалов, включающий отжиг при температуре прогрева от 600 до 1000°С, в присутствии воздуха или газообразного кислорода [4].

Недостатки такого способа термической очистки углеродных нанотрубок заключаются в необходимости использования достаточно высокой температуры нагревания очищаемых углеродных нанотрубок, что увеличивает возможность разрушения части пригодного для использования очищенного нанотрубочного материала и в отсутствии надежного контроля процесса очистки углеродных нанотрубок и точной регистрация завершения процесса очистки нанотрубок.

Задачей предлагаемого изобретения является улучшение качества процесса и надежности термической очистки углеродных нанотрубок, применяемых в медицинских целях.

Предлагаемый способ термической очистки углеродных нанотрубок предполагает контроль процесса отжига, который предусматривает измерения массы очищаемых углеродных нанотрубок в заданные моменты времени их отжига. Регистрация окончания процесса отжига очищаемых нанотрубок осуществляется путем построения, в заданные моменты времени отжига, графиков зависимости массы очищаемых углеродных нанотрубок от времени их отжига. Угол наклона касательной к этим кривым в области выхода их на плато при этом должен находиться в пределах от 0 до 1°.

Предлагаемый способ термической очистки углеродных нанотрубок состоит в последовательности следующих этапов очистки углеродных нанотрубок путем отжига на воздухе.

Первый этап термической очистки углеродных нанотрубок заключается во взвешивании очищаемых нанотрубок и пустого фарфорового тигля, предназначенного для их размещения, а также тигля с размещенными нем очищаемыми нанотрубками. Точность взвешивания тигля с очищаемыми нанотрубками, пустого тигля и очищаемых нанотрубок должна составлять ±1% или менее. Начальная масса очищаемых нанотрубок при этом находится как разница между массой тигля с очищаемыми нанотрубками и массой пустого тигля, при точности измерений ±1% или менее.

Второй этап термической очистки углеродных нанотрубок предусматривает размещение тигля с находящимися в нем очищаемыми нанотрубками в термостате, либо в другом аналогичном устройстве с рабочей температурой до 350°С и выше. В процессе очистки нанотрубок на воздухе температура в нагретом термостате или аналогичном устройстве должна поддерживаться постоянной с точностью ±1-3%.

Третий этап термической очистки очищаемых нанотрубок предусматривает извлечение тигля с нанотрубками из термостата или аналогичного устройства в каждый заданный момент отжига. После извлечения и остывания тигля с нанотрубками производится его взвешивание, с определением массы очищаемых нанотрубок путем вычитания из значения массы заполненного тигля, массы пустого тигля.

На четвертом этапе термической очистки углеродных нанотрубок осуществляется процедура построения графиков зависимости массы очищаемых нанотрубок от времени их отжига для каждого заданного момента отжига, вплоть до его окончания при выходе на плато кривой на графике зависимости массы очищаемых углеродных нанотрубок от времени их отжига. Регистрация окончания процесса отжига осуществляется путем определения угла наклона касательной к кривой на графике зависимости массы очищаемых углеродных нанотрубок от времени их отжига, в области выхода на плато указанной кривой, причем угол наклона касательной к этой кривой должен находиться в пределах от 0 до 1°.

На фиг. 1 показан график (1) зависимости относительной массы очищаемых однослойных углеродных нанотрубок типа НаноКарбЛайт, с начальной массой 280 мг, от времени отжига на воздухе в муфельной печи, при температуре 350°С. Масса указанных углеродных нанотрубок определялась на третьем этапе их термической очистки, после осуществления процедуры размещения, нагревания и извлечения тигля с очищаемыми нанотрубками из термостата или аналогичного устройства на втором этапе термической очистки, а график зависимости относительной массы указанных нанотрубок от времени их отжига строился на четвертом этапе отжига нанотрубок.

Выбор значения температуры отжига на воздухе очищаемых однослойных углеродных нанотрубок, равной 350°С, связан с тем, что ее понижение затягивает длительность процесса отжига нанотрубок, а повышение температуры отжига выше 350°С снижает выход очищенных нанотрубок.

На фиг. 1 показан также вид касательной (2) к указанной кривой, в области выхода этой кривой на плато. Угол наклона касательной к этой кривой в области выхода на плато, определенный согласно описания четвертого этапа очистки, близок к нулю, т.е эта касательная практически параллельна кривой в области ее выхода на плато.

На фиг. 2 показаны полученные на четвертом этапе термической очистки графики зависимости относительной массы трех типов очищаемых углеродных нанотрубок и технической сажи К-354 от времени их отжига на воздухе в муфельной печи, при температуре 350°С. График (1) получен для многослойных углеродных нанотрубок МИЭТ, с начальной массой нанотрубок 190 мг, график (2) - для технической сажи К-354, с начальной массой 200 мг, график (3) - для многослойных углеродных нанотрубок Таунит с начальной массой 320 мг. Показанный для сравнения график (4) получен для однослойных углеродных нанотрубок типа НаноКарбЛайт”, с начальной массой 280 мг. На фиг. 2 показан также вид касательной (5) к кривой графика (4).

Отчетливая область выхода на плато кривых указанных на фиг. 2, наблюдалась только для очищаемых углеродных нанотрубок типа НаноКарбЛайт, при выходе очищенных нанотрубок, по завершению процесса отжига ~ 60%.

Приведенные данные подтверждают эффективность заявляемого способа термической очистки углеродных нанотрубок. При этом, в отличие от прототипа, используется пониженная температура нагревания очищаемых углеродных нанотрубок, что устраняет возможность разрушения части пригодного для использования очищенного нанотрубочного материала, а также обеспечивает надежный контроль и точную регистрацию завершения процесса очистки углеродных нанотрубок.

Выбор предлагаемого способа термической очистки углеродных нанотрубок на воздухе определяется его простотой и эффективностью. Этот способ термической очистки углеродных нанотрубок отличается доступностью и приемлемой стоимостью, так как не требует применения сложных высокотемпературных нагревающих устройств и использования для отжига нанотрубок дорогостоящих материалов. Регистрация выхода на плато кривых на графиках зависимости массы очищаемых углеродных нанотрубок от времени их отжига по углу наклона касательной к этим кривым в области выхода их на плато характерна простой исполнения. Ограничение значения угла наклона касательной к кривой диапазоном от 0 до 1° достаточно для оптимального определения длительности процесса термической очистки углеродных нанотрубок.

Благодаря новому техническому решению по способу термического отжига углеродных нанотрубок, с обеспечением надежного контроля и точной регистрацией завершения процесса очистки углеродных нанотрубок, обеспечивается возможность повышения безопасности применения и надежности очистки нанокомпозитных конструкций на нанотрубочной основе, изготавливаемых лазерным методом и предназначенных для протезирования и замены фрагментов вышедших из строя суставов и имплантации органов и других частей сердечно-сосудистой системы человеческого организма.

Источники информации

1. A.Yu. Gerasimenko, O.E. Glukhova, V. Savostyanov, V M. Podgaetsky. Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures // J. Biomed. Opt., v. 22, No. 6, p. 065003-1-7.

2. Y.S. Park, Y.C. Choi, K.S. Kimb, D.-C. Chung, D.J. Bae, K.H. An, S.C. Lima, X.Y. Zhu, Y.H. Lee. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing // Carbon, 2001, v. 39, No. 5, p. 655-659.

3. Патент США 6752977.

4. Патент США 5641466 - прототип.

Способ термической очистки углеродных нанотрубок от примесных углеродных материалов путем отжига в присутствии газообразного окислителя, отличающийся тем, что отжиг на воздухе очищаемых нанотрубок осуществляется с контролем процесса отжига путем измерения массы очищаемых углеродных нанотрубок в заданные моменты времени отжига и регистрации окончания процесса отжига очищаемых нанотрубок путем определения угла наклона касательной к кривым зависимости массы очищаемых углеродных нанотрубок от времени их отжига путем построения, в заданные моменты времени отжига, графиков зависимости массы очищаемых углеродных нанотрубок от времени их отжига, причем угол наклона касательной к этим кривым в области выхода их на плато должен находиться в пределах от 0 до 1°.
СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ УГЛЕРОДНЫХ НАНОТРУБОК
Источник поступления информации: Роспатент

Показаны записи 31-40 из 64.
13.09.2018
№218.016.86fe

Матричный автоэмиссионный катод и способ его изготовления

Изобретение относится к приборам твердотельной и вакуумной электроники, в частности к автоэмиссионным элементам на основе системы Si-SiC-графен, используемых в качестве катодов: к диодам, к триодам и к устройствам на их основе. Технический результат - повышение тока автоэмиссии и временной...
Тип: Изобретение
Номер охранного документа: 0002666784
Дата охранного документа: 12.09.2018
11.10.2018
№218.016.9020

Устройство для защиты автоматизированных систем от утечки информации по каналам побочных электромагнитных излучений

Изобретение относится к области радиотехники и электроники и может быть использовано для защиты информации, обрабатываемой средствами вычислительной техники от утечки по каналам побочных электромагнитных излучений. Технический результат заключается в электромагнитной совместимости и повышении...
Тип: Изобретение
Номер охранного документа: 0002669065
Дата охранного документа: 08.10.2018
21.10.2018
№218.016.94c5

Способ измерения механических напряжений в мэмс структурах

Изобретение относится к электронной технике, в частности к микроэлектронике, и может быть использовано при изготовлении кристаллов интегральных схем (ИС) и дискретных полупроводниковых приборов. Суть настоящего изобретения состоит в измерении механических напряжений в МЭМС структурах,...
Тип: Изобретение
Номер охранного документа: 0002670240
Дата охранного документа: 19.10.2018
01.11.2018
№218.016.9831

Устройство и способ дозирования заданного объема жидкости

Изобретение может быть использовано для дозирования и нанесения жидкостей и растворов, в том числе коллоидных с повышенной точностью и воспроизводимостью дозируемого объема, как розливом для заполнения контейнеров, так и аэрозольным распылением на поверхности. Содержит устройство и способ...
Тип: Изобретение
Номер охранного документа: 0002671182
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.9932

Устройство для беспроводной чрескожной передачи оптической энергии для питания имплантируемых медицинских приборов

Изобретение относится к области медицинской техники и может быть использовано для беспроводного дистанционного питания имплантируемых медицинских приборов. Устройство содержит внешний передающий модуль, включающий источник энергии, источник оптического излучения, снабженный отражающим...
Тип: Изобретение
Номер охранного документа: 0002671418
Дата охранного документа: 31.10.2018
15.12.2018
№218.016.a78a

Искусственная мышца для сердечной ткани

Изобретение относится к медицинской технике, натотехнологиям, биомедицинским, биомеханическим протезам, может быть применено в робототехнике и актюаторах (приводах). Для создания искусственной мышцы (ИМ), выполняющей механическую функцию поврежденной сердечной ткани, наиболее подходящими...
Тип: Изобретение
Номер охранного документа: 0002675062
Дата охранного документа: 14.12.2018
14.02.2019
№219.016.ba16

Способ и устройство для определения локального механического напряжения в пленке на подложке

Изобретение относится к способам измерения механических свойств материалов, в том числе механических напряжений, с использованием оптических приборов для анализа напряжений. В ходе реализации способа определяют локальное механическое напряжение в пленке на подложке и двухосный модуль упругости...
Тип: Изобретение
Номер охранного документа: 0002679760
Дата охранного документа: 12.02.2019
26.02.2019
№219.016.c806

Кольцевая концентрическая модульная антенная решетка

Изобретение относится к антенной технике, в частности к проектированию активных фазированных антенных решеток (АФАР) и цифровых антенных решеток (ЦАР). Кольцевая модульная концентрическая антенная решетка содержит излучатели, расположенные по нескольким концентрическим окружностям, при этом...
Тип: Изобретение
Номер охранного документа: 0002680665
Дата охранного документа: 25.02.2019
19.04.2019
№219.017.2b88

Способ формирования и обработки сигналов в многодиапазонных и многополосных радиолокационных системах

Изобретение относится к радиолокации и может быть использовано в радиолокационных системах, использующих сигналы с фазокодовой манипуляцией, в том числе в радарах с синтезированной апертурой (РСА). Достигаемый технический результат - улучшение разрешающей способности. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002684896
Дата охранного документа: 16.04.2019
23.04.2019
№219.017.3696

Униполярный датчик деформации

Использование: для создания тензорезисторных датчиков деформации. Сущность изобретения заключается в том, что униполярный датчик деформации содержит гибкую подложку, стекловолокно, на котором нанесена смесь углеродных нанотрубок и графитового порошка, при этом содержит слой толщиной 5-15 мкм из...
Тип: Изобретение
Номер охранного документа: 0002685570
Дата охранного документа: 22.04.2019
Показаны записи 21-23 из 23.
10.08.2019
№219.017.bd81

Устройство усиления комбинационного рассеяния света

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного...
Тип: Изобретение
Номер охранного документа: 0002696899
Дата охранного документа: 07.08.2019
12.08.2019
№219.017.bedf

Устройство для подключения насоса вспомогательного кровообращения к желудочку сердца человека

Изобретение относится к медицинской технике, а именно к устройству для подключения насоса вспомогательного кровообращения к желудочку сердца человека. Устройство содержит фланцевый патрубок, тканую манжету, хомут и входную канюлю насоса вспомогательного кровообращения. Фланцевый патрубок имеет...
Тип: Изобретение
Номер охранного документа: 0002696685
Дата охранного документа: 05.08.2019
07.07.2020
№220.018.3043

Тканеинженерная конструкция для регенерации сердечной ткани

Изобретение относится к медицине и касается тканеинженерной конструкции для регенерации сердечной мышцы, включающей электропроводящий слой композиционного наноматериала из бычьего сывороточного альбумина и наполнителя из одностенных углеродных нанотрубок, содержащей конструкцию из слоев с общей...
Тип: Изобретение
Номер охранного документа: 0002725860
Дата охранного документа: 06.07.2020
+ добавить свой РИД